
Lecture 12 — Dynamic programming

I Closed loop formulation of optimal control
I Intuitive methods of solution
I Guarantees global optimality
I Iteratively solves the problem starting at the end-time

’Life can only be understood backwards;
but it must be lived forwards’

Kierkegaard

Goal

To be able to

I to understand the idea of Dynamic programming
I to derive optimal feedback laws in simple cases

Example: Shortest path

0

��
��

��
��
��
��

��
��

��
��

��
��

��
�����

�
�
�

�
�
�
�
�
�@

@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

@
@
@
@
@
@

6

1 5

22

3

3

2

4

3

3

��
��

As an example we try to find the shortest path to “0” in the
above graph.

Example: Shortest path

2

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��@

@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

0

3

2

5

6

4

3
2

3

3

1

2

3

2

��
��

Example: Shortest path

2��
��

��
��

��
��

��
��

��
��

��
��

��
�����

�
�
�
��

�
�
�
�
�
�
��@

@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

0

3

2

5

6

4

3
2

3

3

1

2

3

2��
��

Example: Shortest path

3

��
��

��
��

��
��

��
��

��
��

��
��

��
�����

�
�
�
��

�
�
�
�
�
�
��@

@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

0

3

2

5

6

4

3
23

1

2
2

2

5

5
3

7

��
��

Example: Shortest path

7

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

@
@
@
@
@
@
@@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

@
@
@
@
@
@
@@

0

3

2

5

6

4

3
23

1

2
2

2
3

5

5

3

��
��

Example: Shortest path

7

��
��

��
��

��
��

��
��

��
��

��
��

��
�����

�
�
�
��

�
�
�
�
�
�
��@

@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

0

3

2

5

6

4

3
23

1

2
2

2
3

5

5

3

��
��

1

Example: Shortest path

7

��
��

��
��

��
��

��
��

��
��

��
��

��
�����

�
�
�
��

�
�
�
�
�
�
��@

@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

0

3

2

5

6

4

3
23

1

2
2

2
3

5

5

3
7

��
��

Example: Shortest path

7

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��@

@
@
@
@
@
@@

@
@
@
@
@
@
@@

@
@
@
@
@
@
@

@
@
@
@
@
@
@

0

3

2

5

6

4

3
23

1

2
2

2
3

5

5

37

��
��

Basic problem formulation: The system

I First we assume that the system is in discrete time

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1

where xk is the state uk ∈ U(xk) is the control.
I Feedback-control implies uk = µk(xk)

I In closed-loop form the system can thus be written

xk+1 = fk(xk, µk(xk))

Basic problem formulation: The cost

I We let µ = {µ0, µ1, . . . , µ N−1} and assume that we have
an additive cost

Jµ(x0) = �N(xN) +
N−1∑

k=0

�k(xk, µk(xk))

I Total cost Jµ(x0) is a function of both initial state x0 and
feedback law µ

I N is the horizon of the problem
I Finite-horizon: N < ∞
I Infinite-horizon: N = ∞

Basic formulation: Minimal cost and optimal strategy

I An optimal policy µ∗ is one that minimizes Jµ(x0) (for all
x0)

Jµ∗(x0) = min
µ∈Π

Jµ(x0)

optimization is performed over the set Π, of admissible
control policies

I For deterministic problems a control is admissible
whenever

uk = µk(xk) ∈ U(xk)

The principle of optimality

Let µ∗ = {µ∗
0, µ∗

1, . . . , µ∗
N−1} be an optimal policy for the basic

problem and assume that when applying µ∗, a given state xi
occurs at time i, when starting at x0.

Consider the subproblem whereby we are in state xi at time i
and wish to minimize the “cost-to-go” from time i to time N

�N(xN) +
N−1∑

k=i

�k(xk, µk(xk)).

Principle of optimality

The truncated policy {µ∗
i , µ∗

i+1, . . . , µ∗
N−1} is optimal for the

subproblem starting from xi at time i.

Principle of optimality

I Google maps fastest
route from LTH to
KTH passes through
Jönköping

I Subpath starting in
Jönköping is the
fastest route from
Jönköping to KTH

The dynamic programming algorithm
Let

Vk(xk) = �N(xN) +
N−1∑

j=k

� j(x j , µ∗
j(x j))

so that Vk(xk) is the optimal “cost-to-go” from time k to time N

The Bellman equation

For every initial state x0, the optimal cost J∗(x0) is given by the
last step in the following backward-recursion.

Vk(xk) = min
uk∈Uk(xk)

[�k(xk, uk, wk) + Vk+1(fk(xk, uk))]

VN(xN) = �N(xN)

We get the optimal control “for-free”

µ∗
k(xk) = arg min

uk∈Uk(xk)
[�k(xk, uk, wk) + Vk+1(fk(xk, uk))]

2

Managing spending and saving

Example

An investor holds a capital sum in a building society, which
gives an interest rate of θ $ 100% on the sum held at each time
k = 0, 1, . . . , N − 1. The investor can chose to reinvest a portion
u of the interest paid which then itself attracts interest. No
amounts invested can ever be withdrawn. How should the
investor act so as to maximize total reward by time N − 1?

I We take as the state xk the present income at time
k = 0, 1, . . . , N − 1 and let uk ∈ [0, 1] be the fraction of
reinvested interest, hence

xk+1 = xk + θukxk =: f (xk, uk)

I The reward is �k(x, u) = (1− u)x and �N(x, u) " 0.

Managing spending and saving

I The optimality equation is V (N, x) = 0,

V (k, x) = max
0≤u≤1

{(1−u)x+V (k+1, (1+θu)x)}, k = 0, 1, . . . , N−1

I We get

V (N − 1, x) = max
0≤u≤1

{(1− u)x + 0} = x

V (N − 2, x) = max
0≤u≤1

{(1− u)x + (1+ θu)x}

= max
0≤u≤1

{2x + (θ − 1)ux} = max{2, 1+ θ}x = ρ2x

I Guess: V (N − s+ 1, x) = ρs−1x, then

V (N − s, x) = max
0≤u≤1

{(1− u)x + ρs−1(1+ uθ)x)}

= max{1+ ρs−1, (1+ θ)ρs−1}x = ρsx

Managing spending and saving

I We have thus verified that V (N − s, x) = ρsx, and found
the recursion

ρs = ρs−1 +max{1,θ ρs−1}

I Together with ρ1 = 1 this gives

ρs =

{
s for s ≤ s∗

s∗(1+ θ)s−s∗ otherwise.
s∗ = l1/θn

I The optimal policy is then

uk =

{
1 for k < N − s∗

0 for k ≥ N − s∗.

Continuous time optimal control: The HJB-equation

I So far we have only considered the discrete time case
I Dynamic programming can also be applied in continuous

time, this leads to the Hamilton-Jacobi-Bellman (HJB)
equation:

I Benefits over PMP:
+ Gives closed-loop optimal control in continuous time
+ Sufficient condition of optimality

I Drawbacks:
– Requires solving a highly non-linear PDE
– Well-posedness of the PDE problem proved only in the ’80s

Continuous time problem formulation

I In continuous time the system is given by

ẋ(t) = f (x(t), u(t)), t ∈ [0, T]

with x(0) = x0 and u(t) ∈ U(x(t)), for all t ∈ [0, T].
I We define the cost as

J(x0) = φ(x(T)) +
∫ T

0
L(x(t), u(t))dt

I With optimal “cost-to-go” from (t, x)

V (t, x) = min
u

{
φ(x(T)) +

∫ T

t
L(x(t), u(t))dt

}

The HJB-equation: Informal derivation

I divide [0, T] into N subintervals of length δ = T/N
I Let xk = x(kδ) and uk = u(kδ), for k = 0, 1, . . . , N and

approximate the system by

xk+1 = xk + f (xk, uk)δ , k = 0, 1, . . . , N.

I The optimal “cost-to-go” is approximated by

V (kδ , x) = min
u0,...,uN−1

[φ(xN) +
N−1∑

k=0

L(xk, uk)δ]

The HJB-equation: Informal derivation

I Dynamic programming now yields

V (kδ , x) = min
u∈U

[L(x, u)δ + V ((k+ 1)δ , x + f (x, u)δ)],

V (Nδ , x) = φ(x).

I For small δ we get (with t = kδ)

V (t+ δ , x + f (x, u)δ) (V (t, x) + Vt(t, x)δ +∇xV (t, x) ⋅ f (x, u)δ

I Inserting this in the DP equation gives

V (t, x) (min
u∈U

[L(x, u)δ + V (t, x)

+ Vt(t, x)δ +∇xV (t, x) ⋅ f (x, u)δ]

The HJB-equation

The Hamilton-Jacobi-Bellman equation

For every initial state x0, the optimal cost is given by
J∗(x0) = V (0, x0) where V (t, x) is the solution to the PDE

Vt(t, x) = −min
u∈U

[L(x, u) +∇xV (t, x) ⋅ f (x, u)]

V (T , x) = φ(x)

As before the optimal control is given in feedback form by

µ∗(t, x) = arg min
u∈U

[L(x, u) +∇xV (t, x) ⋅ f (x, u)]

3

Example: The HJB-equation

Example

Consider the simple example involving the scalar system

ẋ(t) = u(t),

with the constraint pu(t)p ≤ 1 for all t ∈ [0, T] and the cost

J(x0) =
1
2
(x(T))2.

I The HJB equation for this problem is

Vt(t, x) = − min
pu(t)p≤1

[Vx(t, x)u]

with terminal condition V (T , x) = x2/2.

Example: The HJB-equation

I An optimal control for this problem is

µ(t, x) =





1 for x < 0
0 for x = 0
−1 for x > 0

I The optimal “cost-to-go” with this control is

V (t, x) =
1
2
(max{0, pxp − (T − t)})2

Example: The HJB-equation

I For pxp > T − t we have V (t, x) = 1/2(pxp − (T − t))2,
hence

Vt = pxp − (T − t)

min
pu(t)p≤1

[Vx(t, x)u] = −sgn(x)Vx(t, x) = −sgn(x)2(pxp − (T − t))

= −(pxp − (T − t))

I For pxp ≤ T − t we have V (t, x) = 0 and the HJB equation
holds trivially

Infinite horizon problem

Assume that the final cost is φ(x(T)) = 0 and the final time
T → +∞, and that there exists some control such that the total
cost remains bounded in the limit. Hence, we want to solve

min
u

∫ +∞

0
L(x(t), u(t))dt , x(0) = x0

It is intuitive that the cost-to-go from (x, t)

V (x, t) = min
u

∫ T

t
L(x(t), u(t))dt = V (x)

does not depend on the initial time but only on the initial state.

The HJB equation then becomes

0 = min
u
[L(x, u) +∇xV (x) ⋅ f (x, u)]

(Observe that, for scalar problems, this is an ODE!)

Infinite horizon problem: example

min
u

∫ +∞

0
(x4(t) + u4(t))dt , x(0) = x0

From the stationary HJB eqn we get

0 = min
u

{
x4 + u4 + Vx(x) ⋅ u

}

and putting the derivative with respect to u equal to 0

x4 = 3
(

1
4

Vx(x)
)4/3

which gives Vx(x) = ±4(1
3)

3/4x3 and the + sign should be
chosen to have V positive definite)since L is. This gives the
optimal feedback control law

u∗(x) = −(
1
4

Vx(x))1/3 = −(
1
3
)1/4x

Dynamics Programming for LQ control

Consider the optimal feedback control problem for an LTI
system ẋ = Ax + Bu with cost

J =
∫ T

0

(
x′(t)Qx(t) + u′(t)Ru(t)

)
dt+ x(T)′M x(T)

where Q, R, M are symmetric positive definite. The HJB eqn
reads

0 = min
u

{
x′Qx + u′Ru+ Vt + V ′

x(Ax + Bu)
}

with final time condition V (T , x) = x′M x.

Dynamics Programming for LQ control

With the ansatz V (x, t) = x′P(t)x with symmetric P(t), we get
that the optimal control is in the form

u∗ = −R−1 B ′Px

and P = P(t) satisfies the following differential eqn

Ṗ = −PA− A′P− Q + PBR−1 B ′P P(T) = M

which is called the differential Riccati equation (DRE).

For the infinite horizon problem this reduces to

0 = −PA− A′P− Q + PBR−1 B ′P

which is called the algebraic Riccati equation (ARE).

Summary — Dynamic programming

I Closed loop formulation of optimal control
I Intuitive methods of solution
I Guarantees global optimality
I Iteratively solves the problem starting at the end-time

4

