Lecture 12 — Dynamic programming
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Closed loop formulation of optimal control

» Intuitive methods of solution

Guarantees global optimality

lteratively solves the problem starting at the end-time
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‘Life can only be understood backwards;
but it must be lived forwards’

Kierkegaard

Goal

To be able to

» to understand the idea of Dynamic programming
» to derive optimal feedback laws in simple cases

Example: Shortest path

As an example we try to find the shortest path to “0” in the
above graph.
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Basic problem formulation: The system

» First we assume that the system is in discrete time
Xpt1 = fr(xp,ur), k=0,1,...,N—1

where x;, is the state u, € U(x) is the control.
» Feedback-control implies u;, = u(xz)
» In closed-loop form the system can thus be written

Xpr1 = frlor, tr(xr))

Basic problem formulation: The cost

» We let u = {uo, t1,..., un—1} and assume that we have
an additive cost

N-1

Ju(x0) = gn(xn) + D gr(xn, ta(xr))
k=0

» Total cost J,(xo) is a function of both initial state xo and
feedback law u
» N is the horizon of the problem

» Finite-horizon: N < oo
» Infinite-horizon: N = oo

Basic formulation: Minimal cost and optimal strategy

> An optimal policy u* is one that minimizes J,(xo) (for all

x0)
oJ = min
# (xO) ,IunElll:I1 # (xO)

optimization is performed over the set I1, of admissible
control policies

» For deterministic problems a control is admissible

The principle of optimality

Let u* = {ug, 3, ..., 1y_, } be an optimal policy for the basic
problem and assume that when applying ©*, a given state x;
occurs at time i, when starting at xo.

Consider the subproblem whereby we are in state «; at time i
and wish to minimize the “cost-to-go” from time i to time N

N-1

gn(@xN) + Y gr(x, t(xr))-
pa

whenever Principle of optimality
ur = pr(xz) € U(xz)
The truncated policy {4, i}, +,...,H_;} is optimal for the
subproblem starting from x; at time i.
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Vi(xe) = min  [gp(xp, ur, wi) + Vigr (fe(xr, ur))]
ur€ Up(xz)

Vn(xn) = gn(xn)

We get the optimal control “for-free”

uj,(x) = argmin [gg(xp, up, wr) + Vi1 (Fr(r, ur))]
up€ Up(xz)




Managing spending and saving

Example

An investor holds a capital sum in a building society, which
gives an interest rate of & x 100% on the sum held at each time
k=0,1,...,N — 1. The investor can chose to reinvest a portion
u of the interest paid which then itself attracts interest. No
amounts invested can ever be withdrawn. How should the
investor act so as to maximize total reward by time N — 1?

» We take as the state x; the present income at time
k=0,1,...,N —1and let u; € [0,1] be the fraction of
reinvested interest, hence

Xpe1 = X + Oupxy, =: f(xp, uz)

» The reward is g (x,u) = (1 —u)x and gn(x,u) = 0.

Managing spending and saving

» The optimality equation is V(N,x) = 0,

V(k,x) = max {(1—u)x+V (k+1, (1+6u)x)},

k=0,1,...
0<u<l1

» We get

V(N —1,x) = Oréluasxl{(l —u)x+0}=x

V(N —2,x) = Org?sxl{(l —u)x + (14 Ou)x}

= Orguasxl{Zx + (0 — 1)ux} = max{2,1+ 0}x = pox
» Guess: V(N —s+ 1,x) = ps_1x, then
V(N —s,x) = Orgfsxl{(l —u)x + ps—1(1 +ub)x)}

= max{l + Ps—1, (1 + e)psfl}x = Psx

Managing spending and saving

» We have thus verified that V(N — s,x) = psx, and found
the recursion

Ps = Ps—1 + max{L 9,0s71}
» Together with p; = 1 this gives

fors < s*

st =
otherwise.

Ps = {Z*(l + 9)5—3” I—l/e-l

» The optimal policy is then

_J1 fork< N -—s*
“P=0 fork>N—s"

Continuous time optimal control: The HJB-equation

» So far we have only considered the discrete time case
» Dynamic programming can also be applied in continuous
time, this leads to the Hamilton-Jacobi-Bellman (HJB)
equation:
» Benefits over PMP:
+ Gives closed-loop optimal control in continuous time
+ Sufficient condition of optimality
» Drawbacks:

— Reaquires solving a highly non-linear PDE
— Well-posedness of the PDE problem proved only in the '80s

Continuous time problem formulation

» In continuous time the system is given by

x(t) = f(x(8),u(®),

with x(0) = xo and u(¢) € U(x(¢)), forall ¢ € [0, T].
» We define the cost as

te [0,7T]

T
I(x0) =0T + [ L(s(e)u(v)de

0

» With optimal “cost-to-go” from (¢, x)

T
V(t,%) = min {q)(x(T))—I—/t L(x(t),u(®))dt}

The HJB-equation: Informal derivation

» divide [0, 7] into N subintervals of length 6§ = T'/N

> Letxp, = x(k5) and uj, = u(kd), for k=0,1,...,N and
approximate the system by

Xp1 = X + f(xp,ur)d, k=0,1,...,N.
» The optimal “cost-to-go” is approximated by
N-1
V(kS,x) = min [g(xn)+ > L(xg,ur)d]
AAAAA _ prt

The HJB-equation: Informal derivation

» Dynamic programming now yields

V(kS,x) = iréilr]l[L(x,u)E +V((k+1)0,x+ f(x,u)d)],

V(NGJ,x) = ¢(x).
» For small 6 we get (with ¢ = kJ)

V(t+6,x+ f(x,u)d) =~ V(t,x)+ Vi(t,x)0 + V V(t,x) - f(x,u)d
» Inserting this in the DP equation gives
V(t,x) wgéibl[L(x,uﬁ + V(t,x)
+ Vi(t,x)0 + V V(t,x) - f(x,u)d]

The HJB-equation

The Hamilton-Jacobi-Bellman equation

For every initial state x, the optimal cost is given by
J*(x9) = V(0,x9) where V(¢,x) is the solution to the PDE

Vi(t,x) = —Eéig [L(x,u) + Vi V(t,x)- f(x,u)]
V(T,x) = ¢(x)

As before the optimal control is given in feedback form by

Wi(t,x) = argeﬁin [L(x,u) + V. V(t,x)- f(x,u)]




Example: The HJB-equation

Example

Consider the simple example involving the scalar system

(1) = u(?),

with the constraint |u(¢)| < 1 for all ¢ € [0, T] and the cost

I(x0) = 5 (x(T))*

» The HJB equation for this problem is

Vi(t,x) = — ‘ul(r;)llrélle(t,x)u]

with terminal condition V (T, x) = x2/2.

Example: The HJB-equation

» An optimal control for this problem is

1 forx<O0
u(t,x) = 0 forx=0
-1 forx>0

» The optimal “cost-to-go” with this control is

V(t,x) = %(max{O, | — (T — )})2

Example: The HJB-equation

—(T -1 Tt

» For |x| > T —t we have V(t,x) = 1/2(|x| — (T —t))?,
hence
Vi=|x| = (T -9
min [V, (¢,x)u] = —sgn(x)Vy(t,x) = —sgn(x)?(|x| — (T —t))
lu(8)|<1
=—(x[- (T -1)
» For |x| < T —t we have V(¢,x) = 0 and the HJB equation
holds trivially

Infinite horizon problem

Assume that the final cost is ¢(x(7")) = 0 and the final time
T — +o0, and that there exists some control such that the total
cost remains bounded in the limit. Hence, we want to solve

min /M Lx(),u()dt,  x(0) = xo

u 0

It is intuitive that the cost-to-go from (x,t)
T
V() = min/ Lx(t),u(t))dt = V (x)
v Jt

does not depend on the initial time but only on the initial state.
The HJB equation then becomes

0= muin [L(x,u) + V V(x)- f(x,u)]

(Observe that, for scalar problems, this is an ODE!)

Infinite horizon problem: example

+o0
min / @A) +ut@)dt,  x(0) = o
v Jo
From the stationary HJB eqgn we get
0 = min {x4 +ut + Vi(x) - u}

and putting the derivative with respect to u equal to 0

=3 (%Vx(x)> 4/3

which gives V,(x) = £4(3)%4x? and the + sign should be
chosen to have V positive definite )since L is. This gives the
optimal feedback control law

1

W(x) = (V) = ~(5) V4

Dynamics Programming for LQ control

Consider the optimal feedback control problem for an LTI
system & = Ax + Bu with cost

J= /0 " (Y (0Qx(0) + ' (O)Ru(®)) dt + x(TY Ma(T)

where @, R, M are symmetric positive definite. The HJB egn
reads

0 = min {x'Qx + w'Ru + V; + V/(Ax + Bu)}

with final time condition V(T',x) = x’Mx.

Dynamics Programming for LQ control

With the ansatz V' (x,¢) = x'P(¢)x with symmetric P(t), we get
that the optimal control is in the form

u*=—R7'B'Px
and P = P(¢) satisfies the following differential eqgn
P=—-PA-AP-Q+PBR'BP PT)=M

which is called the differential Riccati equation (DRE).

For the infinite horizon problem this reduces to
0=—PA—A'P—Q+PBR'B'P

which is called the algebraic Riccati equation (ARE).

Summary — Dynamic programming

v

Closed loop formulation of optimal control

Intuitive methods of solution

Guarantees global optimality

lteratively solves the problem starting at the end-time
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