

Optimal Control Problem. Constituents

Outline

Control signal $u(t), 0 \le t \le t_f$

Criterium $h(t_f)$.

Differential equations relating $\boldsymbol{h}(t_f)$ and \boldsymbol{u}

 ${\sf Constraints} \ {\sf on} \ u$

Constraints on x(0) and $x(t_f)$

 $t_{\it f}$ can be fixed or a free variable

• Introduction

- Static Optimization with Constraints
- The Maximum Principle
- Examples

Preliminary: Static Optimization

 $\begin{array}{l} \text{Minimize } g_1(x,u) \text{ over } x \in R^n \text{ and } u \in R^m \text{ s.t. } g_2(x,u) = 0. \\ \text{(Assume } g_2(x,u) = 0 \ \Rightarrow \ \partial g_2(x,u) / \partial x \text{ non-singular)} \end{array}$

Lagrangian: $\mathcal{L}(x, u, \lambda) = g_1(x, u) + \lambda^T g_2(x, u)$

Local minima of $g_1(x,u)$ constrained on $g_2(x,u)=0$ can be mapped into critical points of $\mathcal{L}(x,u,\lambda)$

Necessary conditions for local minimum

$$\frac{\partial \mathcal{L}}{\partial x} = 0 \qquad \frac{\partial \mathcal{L}}{\partial u} = 0 \qquad \left(\frac{\partial \mathcal{L}}{\partial \lambda} = g_2(x, u) = 0\right)$$

Sufficient condition for local minimum

$$\frac{\partial^2 \mathcal{L}}{\partial u^2} > 0$$

Outline

- Introduction
- Static Optimization with Constraints
- The Maximum Principle
- Examples

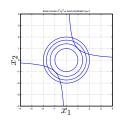
Example - static optimization

 $g_1(x_1, x_2) = x_1^2 + x_2^2$

with the constraint that

Minimize

$$g_2(x_1, x_2) = x_1 \cdot x_2 - 1 = 0$$



Level curves for constant g_1 and the constraint $g_2 = 0$, repectively.

Problem Formulation (1)

 $\begin{array}{ll} \text{Minimize} & \int_{0}^{t_{f}} \overbrace{L(x(t),u(t))}^{\text{Trajectory cost}} dt + \overbrace{\phi(x(t_{f}))}^{\text{Final cost}} \\ \text{where} \\ x(t) \in R^{n}, \quad u(t) \in U \subseteq R^{m} \end{array}$

$$\begin{split} \dot{x}(t) &= f(x(t), u(t)), \qquad x(0) = x_0 \\ 0 &\leq t \leq t_f, \qquad t_f \text{ given} \end{split}$$

Here we have a fixed end-time t_f . This will be relaxed later on.

The Maximum Principle

Introduce the Hamiltonian

$$H(x, u, \lambda) = L(x, u) + \lambda^{T}(t)f(x, u)$$

and notation

$$H_x = \frac{\partial H}{\partial x} = \begin{pmatrix} \frac{\partial H}{\partial x_1} & \frac{\partial H}{\partial x_2} \dots \end{pmatrix}$$

Theorem 18.2 of $\mathsf{Glad}/\mathsf{Ljung}$

Assume that (1) has a solution $\{u^*(t),x^*(t)\}.$ Then

$$\min_{u \in U} H(x^*(t), u, \lambda(t)) = H(x^*(t), u^*(t), \lambda(t)), \quad 0 \le t \le t_f,$$

where $\lambda(t)$ solves the **adjoint equation**

 $\frac{d\lambda}{dt} = -H_x^T(x^*(t), u^*(t), \lambda(t)), \quad \text{with} \quad \lambda(t_f) = \phi_x^T(x^*(t_f))$

Remarks

Idea: note that every change of u(t) from the suggested optimal $u^{\ast}(t)$ must lead to larger value of the criterium.

Should be called "minimum principle"

 $\lambda(t)$ are called the ${\bf adjoint}\ {\bf variables}$ or ${\bf co\text{-state}}\ {\bf variables}$

Proof Sketch

Optimal Control Problem

$$\min_{u} J = \min_{u} \left\{ \phi(x(t_f)) + \int_{t_0}^{t_f} L(x, u) \, dt \right\}$$

subject to

$$\dot{x} = f(x, u), \quad x(t_0) = x_0$$

$$\begin{split} H(x,u,\lambda) &= L(x,u) + \lambda^T f(x,u) \text{ gives} \\ \\ J &= \phi(x(t_f)) + \int_{-}^{t_f} \left(L(x,u) + \lambda^T (f-\dot{x}) \right) \, dt \end{split}$$

$$= \phi(x(t_f)) - [\lambda^T x]_{t_0}^{t_f} + \int_{t_0}^{t_f} \left(H + \dot{\lambda}^T x\right) dt$$

The second equality is obtained using "integration by parts".

Remarks

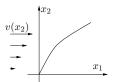
The Maximum Principle gives **necessary** conditions A pair $(u^*(\cdot), x^*(\cdot))$ is called **extremal** the conditions of the Maximum Principle are satisfied. Many extremals can exist. The maximum principle gives all possible candidates. However, there might not exist a minimum!

Example

Minimize x(1) when $\dot{x}(t) = u(t)$, x(0) = 0 and u(t) is free

Why doesn't there exist a minimum?

Example-Boat in Stream



 $\begin{array}{l} \min \ -x_1(T) \\ \dot{x}_1 = v(x_2) + u_1 \\ \dot{x}_2 = u_2 \\ x_1(0) = 0 \\ x_2(0) = 0 \\ u_1^2 + u_2^2 = 1 \end{array}$

Speed of water $v(\boldsymbol{x}_2)$ in \boldsymbol{x}_1 direction. Move maximum distance in $\boldsymbol{x}_1\text{-direction}$ in fixed time T

Assume v linear so that $v'(x_2) = 1$

Solution

Optimality: Control signal should solve

 $\min_{u_1^2 + u_2^2 = 1} \lambda_1(v(x_2) + u_1) + \lambda_2 u_2$

Minimize $\lambda_1 u_1 + \lambda_2 u_2$ so that (u_1, u_2) has length 1

$$\begin{split} u_1(t) &= -\frac{\lambda_1(t)}{\sqrt{\lambda_1^2(t) + \lambda_2^2(t)}}, \quad u_2(t) = -\frac{\lambda_2(t)}{\sqrt{\lambda_1^2(t) + \lambda_2^2(t)}}\\ u_1(t) &= \frac{1}{\sqrt{1 + (t - T)^2}}, \quad u_2(t) = \frac{T - t}{\sqrt{1 + (t - T)^2}} \end{split}$$

See fig 18.1 for plots

Remark: It can be shown that this optimal control problem has a minimum. Hence it must be the one we found, since this was the only solution to MP

Proof Sketch Cont'd

Variation of J:

$$\delta J = \left[\left(\frac{\partial \phi}{\partial x} - \lambda^T \right) \delta x \right]_{t=t_f} + \int_{t_0}^{t_f} \left[\left(\frac{\partial H}{\partial x} + \dot{\lambda}^T \right) \delta x + \frac{\partial H}{\partial u} \delta u \right] dt$$

Necessary conditions for local minimum ($\delta J = 0$)

$$\lambda(t_f)^T = \left.\frac{\partial\phi}{\partial x}\right|_{t=t_f} \qquad \dot{\lambda}^T = -\frac{\partial H}{\partial x} \qquad \quad \frac{\partial H}{\partial u} = 0$$

• λ specified at $t = t_f$ and x at $t = t_0$

- Two Point Boundary Value Problem (TPBV)
- For sufficiency $\frac{\partial^2 H}{\partial u^2} \ge 0$

Outline

- Introduction
- Static Optimization with Constraints
- The Maximum Principle
- Examples

Solution

Hamiltonian:

$$H = 0 + \lambda^T f = \begin{bmatrix} \lambda_1 & \lambda_2 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \lambda_1 (v(x_2) + u_1) + \lambda_2 u_2$$

Adjoint equation:

$$\begin{bmatrix} \dot{\lambda}_1 \\ \dot{\lambda}_2 \end{bmatrix} = \begin{bmatrix} -\partial H/\partial x_1 \\ -\partial H/\partial x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ -v'(x_2)\lambda_1 \end{bmatrix} = \begin{bmatrix} 0 \\ -\lambda_1 \end{bmatrix}$$

with boundary conditions

$$\begin{bmatrix} \lambda_1(T) \\ \lambda_2(T) \end{bmatrix} = \begin{bmatrix} \partial \phi / \partial x_1 |_{x=x^*(t_f)} \\ \partial \phi / \partial x_2 |_{x=x^*(t_f)} \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

This gives $\lambda_1(t) = -1$, $\lambda_2(t) = t - T$

5 min exercise

Solve the optimal control problem

$$\min \int_0^1 u^4 dt + x(1)$$
$$\dot{x} = -x + u$$
$$x(0) = 0$$

5 min exercise - solution

Compare with standard formulation:

$$t_f = 1$$
 $L = u^4$ $\phi = x$ $f(x) = -x + u$

Need to introduce \underline{one} adjoint state

Hamiltonian:

$$H = L + \lambda^T \cdot f = u^4 + \lambda(-x + u)$$

Adjoint equation:

$$\begin{split} \frac{d\lambda}{dt} &= -\frac{\partial H}{\partial x} = -(-\lambda) & \implies & \lambda(t) = Ce^t \\ \lambda(t_f) &= \frac{\partial \phi}{\partial x} = 1 & \implies & \lambda(t) = e^{t-1} \end{split}$$

Goddard's Rocket Problem revisited

How to send a rocket as high up in the air as possible?

 \wedge

 $\begin{aligned} &(v(0),h(0),m(0))=(0,0,m_0),\,g,\gamma>0\\ &u \text{ motor force, } D=D(v,h) \text{ air resistance}\\ &\text{Constraints: } 0\leq u\leq u_{max} \text{ and } m(t_f)=m_1 \text{ (empty)}\\ &\text{Optimization criterion: } \max_{t_f,u}h(t_f) \end{aligned}$

Summary

- Introduction
- $\circ \quad {\sf Static \ Optimization \ with \ Constraints}$
- \circ $\;$ Optimization with Dynamic Constraints
- The Maximum Principle
- Examples

At optimality:

 \implies

$$0 = \frac{\partial H}{\partial u} = 4u^3 + \lambda$$
$$u(t) = \sqrt[3]{-\lambda(t)/4} = \sqrt[3]{-e^{(t-1)/4}}$$

Problem Formulation (2)

$$\begin{split} \min_{\substack{t_f \geq 0 \\ u:[0,t_f] \to U}} & \int_0^{t_f} L(x(t),u(t)) \, dt + \phi(t_f,x(t_f)) \\ \dot{x}(t) &= f(x(t),u(t)), \quad x(0) = x_0 \\ \psi(t_f,x(t_f)) &= 0 \end{split}$$

Note the differences compared to standard form:

- t_f free variable (i.e., not specified a priori)
- r end constraints

$$\Psi(t_f, x(t_f)) = \begin{bmatrix} \Psi_1(t_f, x(t_f)) \\ \vdots \\ \Psi_r(t_f, x(t_f)) \end{bmatrix} = 0$$

• time varying final penalty, $\phi(t_f, x(t_f))$

The Maximum Principle will be generalized in the next lecture!