Lecture 2	Today's Goal	
► Linearization		
 Stability definitions 	To be able to	
Stability and controllability from linearization	Inearize, both around equilibria and trajectories	
	 explain definitions of stability check local stability and local controllability at equilibria 	
 Simulation in Matlab/Simulink 	 simulate in Simulink 	
Material		
► Glad& Ljung Ch. 11, 12.1,		
 (Khalil Ch 2.3, part of 4.1, and 4.3) ▶ Lecture slides 		
Linearization Around a Trajectory	Linearization Around a Trajectory, cont.	
Idea: Make Taylor-expansion around a known solution $\{x^*(t), u^*(t)\}$.	Let $(x^*(t), y^*(t))$ denote a solution to $\dot{x} = f(x, y)$ and consider	
Let	Let $(x^*(t), u^*(t))$ denote a solution to $\dot{x} = f(x, u)$ and consider another solution $(x(t), u(t)) = (x^*(t) + \tilde{x}(t), u^*(t) + \tilde{u}(t))$:	
$\frac{dx^*}{dt} = f(x^*(t), u^*(t))$	$\dot{x}(t) = f(x^*(t) + \tilde{x}(t), u^*(t) + \tilde{u}(t))$	
be a known solution.	$=f(x^*(t),u^*(t))+\frac{\partial f}{\partial x}(x^*(t),u^*(t))\tilde{x}(t)+\frac{\partial f}{\partial u}(x^*(t),u^*(t))\tilde{u}(t)+\mathcal{O}(\ \tilde{x},\tilde{u}\ ^2)$	
How will a small deviation $\{ ilde{x}, ilde{u}\}$ from this solution behave?	$\dot{\tilde{x}}(t) = \frac{\partial f}{\partial x}(x^*(t), u^*(t))\tilde{x}(t) + \frac{\partial f}{\partial u}(x^*(t), u^*(t))\tilde{u}(t) + \mathcal{O}(\ \tilde{x}, \tilde{u}\ ^2)$	
$\frac{d(x^* + \tilde{x})}{dt} = f(x^*(t) + \tilde{x}(t), u^*(t) + \tilde{u}(t))$	0.2 0.2 /	
	$(x^*(t), u^*(t))$	
$(x^{*}(t), u^{*}(t))$	$(x^{*}(t) + \tilde{x}(t), u^{*}(t) + \tilde{u}(t))$	
$(x^*(t) + \tilde{x}(t), u^*(t) + \tilde{u}(t))$		
State-space form	Linearization, cont'd	
Hence, for small (\tilde{x}, \tilde{u}) , approximately	The linearization of the output equation	
$\dot{\tilde{x}}(t) = A(t)\tilde{x}(t) + B(t)\tilde{u}(t)$	y(t) = h(x(t), u(t))	
x(t) = A(t)x(t) + D(t)u(t)		
where (if dim $x - 2$, dim $y - 1$)	around the nominal output $y^{st}(t)=h(x^{st}(t),u^{st}(t))$ is given by	
where (if dim $x = 2$, dim $u = 1$)	around the nominal output $y^*(t) = h(x^*(t), u^*(t))$ is given by $ ilde{y}(t) = C(t) ilde{x}(t) + D(t) ilde{u}(t)$	
$A(t) = \frac{\partial f}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$		
$A(t) = \frac{\partial f}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$	$\tilde{y}(t)=C(t)\tilde{x}(t)+D(t)\tilde{u}(t)$ where (if dim $y=$ dim $x=2,$ dim $u=1)$	
	$\tilde{y}(t) = C(t)\tilde{x}(t) + D(t)\tilde{u}(t)$	
$A(t) = \frac{\partial f}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $B(t) = \frac{\partial f}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} \\ \frac{\partial f_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$ Note that A and B are time dependent ! However, if we don't	$\begin{split} \tilde{y}(t) &= C(t)\tilde{x}(t) + D(t)\tilde{u}(t) \\ \text{where (if dim } y &= \text{dim } x = 2, \text{ dim } u = 1) \\ C(t) &= \frac{\partial h}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t)) \end{split}$	
$A(t) = \frac{\partial f}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $B(t) = \frac{\partial f}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} \\ \frac{\partial f_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$	$\tilde{y}(t) = C(t)\tilde{x}(t) + D(t)\tilde{u}(t)$ where (if dim y = dim x = 2, dim u = 1)	
$\begin{split} A(t) &= \frac{\partial f}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t)) \\ B(t) &= \frac{\partial f}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} \\ \frac{\partial f_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t)) \end{split}$ Note that A and B are time dependent ! However, if we don't linearize around a trajectory but linearize around an equilibrium	$\begin{split} \tilde{y}(t) &= C(t)\tilde{x}(t) + D(t)\tilde{u}(t) \\ \text{where (if dim } y &= \text{dim } x = 2, \text{ dim } u = 1) \\ C(t) &= \frac{\partial h}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t)) \end{split}$	
$\begin{split} A(t) &= \frac{\partial f}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t)) \\ B(t) &= \frac{\partial f}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} \\ \frac{\partial f_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t)) \end{split}$ Note that A and B are time dependent ! However, if we don't linearize around a trajectory but linearize around an equilibrium point $(x^*(t), u^*(t)) \equiv (x^*, u^*)$ then A and B are constant .	$\tilde{y}(t) = C(t)\tilde{x}(t) + D(t)\tilde{u}(t)$ where (if dim $y = \dim x = 2$, dim $u = 1$) $C(t) = \frac{\partial h}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $D(t) = \frac{\partial h}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial u_1} \\ \frac{\partial h_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$	
$A(t) = \frac{\partial f}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $B(t) = \frac{\partial f}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} \\ \frac{\partial f_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$ Note that A and B are time dependent ! However, if we don't linearize around a trajectory but linearize around an equilibrium point $(x^*(t), u^*(t)) \equiv (x^*, u^*)$ then A and B are constant . Example - Linearization around equilibrium point	$\tilde{y}(t) = C(t)\tilde{x}(t) + D(t)\tilde{u}(t)$ where (if dim $y = \dim x = 2$, dim $u = 1$) $C(t) = \frac{\partial h}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} \\ \frac{\partial h_2}{\partial x_2} & \frac{\partial h_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $D(t) = \frac{\partial h}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial u_1} \\ \frac{\partial h_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$ Example: Rocket	
$A(t) = \frac{\partial f}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $B(t) = \frac{\partial f}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} \\ \frac{\partial f_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$ Note that A and B are time dependent ! However, if we don't linearize around a trajectory but linearize around an equilibrium point $(x^*(t), u^*(t)) \equiv (x^*, u^*)$ then A and B are constant . Example - Linearization around equilibrium point The linearization of	$\tilde{y}(t) = C(t)\tilde{x}(t) + D(t)\tilde{u}(t)$ where (if dim $y = \dim x = 2$, dim $u = 1$) $C(t) = \frac{\partial h}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} \\ \frac{\partial h_2}{\partial x_2} & \frac{\partial h_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $D(t) = \frac{\partial h}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial u_1} \\ \frac{\partial h_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$ Example: Rocket	
$A(t) = \frac{\partial f}{\partial x}(x^{*}(t), u^{*}(t)) = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\ \frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} \end{bmatrix} (x^{*}(t), u^{*}(t))$ $B(t) = \frac{\partial f}{\partial u}(x^{*}(t), u^{*}(t)) = \begin{bmatrix} \frac{\partial f_{1}}{\partial u_{1}} \\ \frac{\partial f_{2}}{\partial u_{1}} \end{bmatrix} (x^{*}(t), u^{*}(t))$ Note that A and B are time dependent ! However, if we don't linearize around a trajectory but linearize around an equilibrium point $(x^{*}(t), u^{*}(t)) \equiv (x^{*}, u^{*})$ then A and B are constant . Example - Linearization around equilibrium point	$\tilde{y}(t) = C(t)\tilde{x}(t) + D(t)\tilde{u}(t)$ where (if dim $y = \dim x = 2$, dim $u = 1$) $C(t) = \frac{\partial h}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $D(t) = \frac{\partial h}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial u_1} \\ \frac{\partial h_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$	
$A(t) = \frac{\partial f}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $B(t) = \frac{\partial f}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} \\ \frac{\partial f_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$ Note that A and B are time dependent ! However, if we don't linearize around a trajectory but linearize around an equilibrium point $(x^*(t), u^*(t)) \equiv (x^*, u^*)$ then A and B are constant . Example - Linearization around equilibrium point The linearization of $\ddot{x}(t) = \frac{g}{l} \sin x(t)$ around the equilibrium $x^* = n\pi$ is given by	$\tilde{y}(t) = C(t)\tilde{x}(t) + D(t)\tilde{u}(t)$ where (if dim $y = \dim x = 2$, dim $u = 1$) $C(t) = \frac{\partial h}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} \\ \frac{\partial h_2}{\partial x_2} & \frac{\partial h_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $D(t) = \frac{\partial h}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial u_1} \\ \frac{\partial h_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$ Example: Rocket	
$A(t) = \frac{\partial f}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $B(t) = \frac{\partial f}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} \\ \frac{\partial f_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$ Note that A and B are time dependent! However, if we don't linearize around a trajectory but linearize around an equilibrium point $(x^*(t), u^*(t)) \equiv (x^*, u^*)$ then A and B are constant . Example - Linearization around equilibrium point The linearization of $\ddot{x}(t) = \frac{g}{l} \sin x(t)$	$\tilde{y}(t) = C(t)\tilde{x}(t) + D(t)\tilde{u}(t)$ where (if dim $y = \dim x = 2$, dim $u = 1$) $C(t) = \frac{\partial h}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} \\ \frac{\partial h_2}{\partial x_1} & \frac{\partial h_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $D(t) = \frac{\partial h}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial u_1} \\ \frac{\partial h_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$ Example: Rocket $\dot{h}(t) = v(t)$ $\dot{v}(t) = -g + \frac{v_e u(t)}{m(t)}$ $\dot{m}(t) = -u(t)$	
$A(t) = \frac{\partial f}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $B(t) = \frac{\partial f}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} \\ \frac{\partial f_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$ Note that A and B are time dependent ! However, if we don't linearize around a trajectory but linearize around an equilibrium point $(x^*(t), u^*(t)) \equiv (x^*, u^*)$ then A and B are constant . Example - Linearization around equilibrium point The linearization of $\ddot{x}(t) = \frac{g}{l} \sin x(t)$ around the equilibrium $x^* = n\pi$ is given by	$\tilde{y}(t) = C(t)\tilde{x}(t) + D(t)\tilde{u}(t)$ where (if dim $y = \dim x = 2$, dim $u = 1$) $C(t) = \frac{\partial h}{\partial x}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial x_1} & \frac{\partial h_1}{\partial x_2} \\ \frac{\partial h_2}{\partial x_2} & \frac{\partial h_2}{\partial x_2} \end{bmatrix} (x^*(t), u^*(t))$ $D(t) = \frac{\partial h}{\partial u}(x^*(t), u^*(t)) = \begin{bmatrix} \frac{\partial h_1}{\partial u_1} \\ \frac{\partial h_2}{\partial u_1} \end{bmatrix} (x^*(t), u^*(t))$ Example: Rocket	

Outline

Asymptotic Stability

Definition The equilibrium x^* is **locally asymptotically stable**

 $x(t) \longrightarrow x^* \quad \text{ as } \quad t \longrightarrow \infty.$

2) there exists r > 0 so that if $||x(0) - x^*|| < r$ then

(PhD-exercise: Show that 1) does not follow from 2))

Linearization

(LAS) if it

1) is stable

- Stability definitions
- Stability and controllability from linearization
- Simulation in Matlab/Simulink

Local Stability

Consider $\dot{x} = f(x)$ where $f(x^*) = 0$

Definition The equilibrium x^* is **stable** if, for any R > 0, there exists r > 0, such that

 $||x(0) - x^*|| < r \implies ||x(t) - x^*|| < R$, for all $t \ge 0$

Otherwise the equilibrium point x^* is **unstable**.

Global Asymptotic Stability

Definition The equilibrium is said to be **globally asymptotically stable (GAS)** if it is LAS and for all x(0) one has

 $x(t) \to x^* \text{ as } t \to \infty.$

Lyapunov's Linearization Method

 $\dot{x} = f(x)$

Theorem Assume

has the linearization

$$\frac{d}{dt}(x(t) - x^*) = A(x(t) - x^*)$$

around the equilibrium point x^* and put

 $\alpha(A) = \max \mathsf{Re}(\lambda(A))$

• If $\alpha(A) < 0$, then $\dot{x} = f(x)$ is LAS at x^* ,

- If $\alpha(A) > 0$, then $\dot{x} = f(x)$ is unstable at x^* ,
- If $\alpha(A) = 0$, then no conclusion can be drawn.

(Proof in Lecture 4)

Local Controllability

Theorem Assume

$$\dot{x} = f(x, u)$$

has the linearization

$$\frac{d\tilde{x}}{dt} = A\tilde{x} + B\tilde{u}$$

around the equilibrium (x^\ast,u^\ast) then the nonlinear system is <code>locally controllable</code> provided that (A,B) controllable.

Here local controllability is defined as follows:

For every T > 0 and $\varepsilon > 0$ the set of states x(T) that can be reached from $x(0) = x^*$, by using controls satisfying $||u(t) - u^*|| < \varepsilon$, contains a small ball around x^* .

Simulation in Matlab/Simulink

Stability and controllability from linearization

Example

The linearization of

Linearization

Stability definitions

$$\dot{x}_1 = -x_1^2 + x_1 + \sin(x_2)$$

 $\dot{x}_2 = \cos(x_2) - x_1^3 - 5x_2$

at $x^* = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ gives $A = \begin{pmatrix} -1 & 1 \\ -3 & -5 \end{pmatrix}$

Eigenvalues are given by the $\ensuremath{\textit{characteristic equation}}$

 $0 = \det(\lambda I - A) = (\lambda + 1)(\lambda + 5) + 3$

This gives $\lambda=\{-2,-4\},$ which are both in the left half-plane, hence the nonlinear system is LAS around $x^*.$

5 minute exercise:

Is the ball and beam

$$\ddot{x} = x\dot{\phi}^2 + g\sin\phi + \frac{2r}{5}\ddot{\phi}$$

nonlinearly locally controllable around $\dot{\phi} = \phi = x = \dot{x} = 0$ (with $\ddot{\phi}$ as input)?

Remark: This is a bit more detailed model of the ball and beam than we saw in Lecture 1.

2016 IEEE Intelligent Vehicles Symp., Gothenburg

[Evestedt, Ljungqvist, Axehill]

More parking in lecture 12.

Example, cont.

The linearization around $x_1 = x_2 = 0, u = 0$ is given by

$$\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& \frac{g}{l} x_1 \end{array}$$

It is not controllable, hence no conclusion can be drawn about nonlinear controllability

However, simulations show that the system is stabilized by

 $u(t) = \varepsilon \omega^2 \sin(\omega t)$

if ω is large enough !

Demonstration We will come back to this example later.

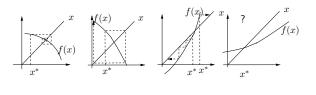
Example (cont'd): Numerical iteration

 $x_{k+1} = f(x_k)$

 $x^* = f(x^*)$

to find fixed point

When does the iteration converge?



A 10 144 14 14	w.modbee.com/life/wheels/story/8015603p-8880060c.html	= 0
nttp://www	w.modbee.com/ife/wheels/story/8015603p-8880060c.ntml	
🛇 Members 🛇 Web	Mail 🛇 Connections 🛇 Riz.Inumal 🛇 SmartUpdate 🛇 Mktplace 🛇 Grad	luate Semi
modbee co	m STA CANU	000 200-04
mounce of		Turlock - Stockton - Tulare - New - Used - Rental
The Modesto Bee,	Modesto CA Home Delivery News Classified Cars	Jobs Homes Apartments
номе	🔄 🖭 E-mail this story 🖉 Print this story 🕓 E-mail updates	BE Home Delivery of The Bee
ARCHIVES	Research in the proving the proving the	
NEWS	Rejoice, parallel parking haters	
POLITICS	By YURI KAGEYAMA THE ASSOCIATED PRESS	
OPINION		
OBITUARIES	Last Updated: January 16, 2004, 10:08:12 AM PST	LUSSES CONS.
WEATHER	TO KYO Your hands don't even need to be touching the steering	Com
SPORTS	wheel for it to start spinning back and forth aggressively, all by itself	
LIFE Monday Life Technology Healthy Living Taste Buzzz	slowly guiding the car into the parking spot. Parallel parking is designed to be a breeze with the Intelligent Parking Assist system, part of a new 22,200 option package for Toyota Motor Corp.'s Prius gas-electric hybrid in Jepan.	HUNS
Leisure & Style Wheels Faith & Values Friends & Family Travel Your Home Horoscope	This is a hold and somewhat unnerving concept, a car that parks itself. As a driver, poir's ept to wonder as the Prints eases back toward the curk. What is this machine thinking? It's also difficult not to be gripped by a "Look ma, no heads" thrill – even if the system only partially tulfills its promise.	Look, Ma, no handsi To help drivers vexed by parallel parking. Toyota h created an Intelligent Parking Assist system that allows a vehicle to park itself. The system relies on a built-i computer, a steering sensor and a t camera in the vehicle's rear. The
THE ARTS	But we'll get to the drawbacks later.	\$2,200 option, however, is only available so far on Toyota's Prius
BUSINESS	First, the logic behind this innovation.	gas-electric hybrid in Japan, and ha other limitations that make it far fro
COLUMNISTS		the perfect hands-free parking
GALLERIES	If you know Japan, it should come as no surprise that about 80 percent	system. THE ASSOCIATED PRESS
VALLEY MALL	of its Prius buyers have opted for Intelligent Parking Assist. This is a	

Example

An inverted pendulum with vertically moving pivot point

$$\ddot{\phi}(t) = \frac{1}{l} \left(g + u(t) \right) \sin(\phi(t)),$$

where u(t) is acceleration, can be written as

 $\begin{array}{rcl} \dot{x}_1 & = & x_2 \\ \dot{x}_2 & = & \displaystyle \frac{1}{l} \left(g+u\right) \sin(x_1) \end{array}$

Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

 $x_{k+1} = f(x_k)$

is asymptotically stable at \boldsymbol{x}^* if the linearization

 $\frac{\partial f}{\partial x}\Big|_{x^*}$ has all eigenvalues in $|\lambda| < 1$

(that is, within the unit circle).

Outline

- Linearization
- Stability definitions
- Stability and controllability from linearization
- Simulation in Matlab/Simulink

