
Lecture 14 — Course Summary

◮ CEQ

◮ The exam

◮ Questions / review of the course

CEQ

You will get a mail regarding CEQ (Course evaluation) to be
filled out via a web-page.

Please, fill it in, and write your comments.

Both Swedish and English versions are available!

Remember, without your feedback we teach in open-loop.

Question: What’s on the exam?

Among old exam problems:

◮ Models, equilibria etc
◮ Linearization and stability
◮ Circle criterion
◮ Small gain
◮ Describing Functions
◮ Lyapunov functions
◮ . . .

Old exams and solutions are available from the course home page.

Exam (January 10, 2017, 14:00-19:00)

Course Material Allowed:

◮ Lecture slides 1-14 (no exercises or old exams)
◮ Laboratory exercises 1, 2, and 3
◮ Reglerteori by Glad and Ljung
◮ Applied Nonlinear Control by Slotine and Li
◮ Nonlinear Systems by Khalil
◮ Calculus of variations and optimal control theory by

Liberzon

You may bring everything on the list + “Collection of Formulae
for Control” to the exam.

Question

Can I get different answers if use the Small Gain theorem and
the Circle criterion? What does it mean?

◮ If the conditions for stability are not satisfied for one
criterion it does not necessarily mean that the system is
unstable. It just means that you can not use that method to
guarantee stability. You can never ’prove’ that a system is
stable with one method and ’unstable’ with another.

◮ Similarly, there are no general guaranteed methods to find
a Lyapunov function (though some suggested good
methods/candidates are worth to try, e.g., quadratic, total
energy, etc.).

Question

Please repeat the stability definitions and methods to prove
stability.

Explain invariant sets and when V̇ = 0.

Stability Definitions

An equilibrium point x = 0 of ẋ = f (x) is

locally stable, if for every R > 0 there exists r > 0, such that

qx(0)q < r [ qx(t)q < R, t ≥ 0

locally asymptotically stable, if locally stable and

qx(0)q < r [ lim
t→∞

x(t) = 0

globally asymptotically stable, if asymptotically stable for all
x(0) ∈ Rn.

Lyapunov Theorem for Local Stability

Theorem Let ẋ = f (x), f (0) = 0, and 0 ∈ Ω ⊂ Rn for some
open set Ω. Assume that V : Ω → R is a C1 function. If

◮ V (0) = 0
◮ V (x) > 0, for all x ∈ Ω, x ,= 0
◮ V̇ (x) ≤ 0 along all trajectories in Ω

then x = 0 is locally stable. Furthermore, if also

◮ V̇ (x) < 0 for all x ∈ Ω, x ,= 0

then x = 0 is locally asymptotically stable.
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Lyapunov Theorem for Global Stability

Theorem Let ẋ = f (x) and f (0) = 0. Assume that V : Rn → R
is a C1 function. If

◮ V (0) = 0
◮ V (x) > 0, for all x ,= 0
◮ V̇ (x) < 0 for all x ,= 0

◮ V (x) → ∞ as qxq → ∞ (radial unboundedness)

then x = 0 is globally asymptotically stable.

Invariant Sets

Definition A set M is called invariant if for the system

ẋ = f (x),

x(0) ∈ M implies that x(t) ∈ M for all t ≥ 0.

x(0)

x(t)

M

When finding Lyapunov function candidates with dV
dt ≤ 0 we

often want to use this like to show that the origin is the largest
invariant set M.

Invariant Set Theorem

Theorem Let Ω ∈ Rn be a bounded and closed set that is
invariant with respect to

ẋ = f (x).

Let V : Rn → R be a C1 function such that V̇ (x) ≤ 0 for x ∈ Ω.
Let E be the set of points in Ω where V̇ (x) = 0. If M is the
largest invariant set in E, then every solution with x(0) ∈ Ω
approaches M as t →∞

Ω E M

Example

Example:

ẋ1 = x2

ẋ2 = −x2 − x3
1

Try with
V (x) = x2

1 + x2
2 (Alt. 1)

or
V (x) = 0.5x4

1 + x2
2 (Alt. 2)

Alt 1:

dV
dt

=
�V
�x1

dx1

dt
+
�V
�x2

dx2

dt
= 2x1x2 + 2x2(−x2 − x3

1) = 2(x1 − x3
1)x2 − 2x2

2 !??

No information as indefinite.

Alt 2:

dV
dt

= 0.5 ⋅ 4x3
1x2 + 2x2(−x2 − x3

1) = −2x2
2 ≤ 0

To show asymptotic stability we need to continue (Alt.2) and
use LaSalle or the invariance set theorem!

The Circle Criterion, 0 < k1 ≤ k2 < ∞

y

k1y

k2y f (y)

− 1
k1

− 1
k2

G(iω )

Theorem Consider a feedback loop with y= Gu and
u = − f (y). Assume G(s) is stable and that

k1 ≤
f (y)

y
≤ k2.

If the Nyquist curve of G(s) stays outside the circle defined by
the points −1/k1 and −1/k2, then the closed-loop system is
BIBO stable.

The other cases

G: stable system

◮ 0 < k1 < k2: Stay outside circle
◮ 0 = k1 < k2: Stay to the right of the line Re s = −1/k2

◮ k1 < 0 < k2: Stay inside the circle

Other cases: Multiply f and G with −1.

Circle criterion / Sector conditions

What does it mean that we can get different sectors when using
the circle criterion for a nonlinearity in feedback with a (fixed)
linear system?

Can I have many different sector conditions, and what does that
mean?

Re G

Im G

−1/k1
−1/k3

k1

k2

k3

k4
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Re G

Im G

−1/k1
−1/k3

k1

k2

k3

k4

In the example above, the circle criterion can guarantee absolute
stability for a nonlinearity which is bounded to either the sector
[k1, k2] or [k3, k4] or in many other sectors, but NOT for a nonlinearity
which is allowed to have a full variation within the sector [k1, k4].

Example: G(s) =
1000

(s+ 10)(s2 + 2s+ 100)
in negative feedback with a sector bounded nonlinearity.
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(x-(- 4))2+(y)2-( 1.4)2 = 0

sector [0.28, 0.41] or [0.19, 0.38 ]
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sector [0, 1/2.9] or
[-0.41, 0.23]

Small gain theorem will give symmetric sector [-0.27, 0.27] as
ppGpp = 3.69.

Questions

Is it possible to draw phase portraits for systems of order higher
than two?

Can the describing function method be improved by including
more coefficients from the Fourier series expansion?

Are there criteria to verify the low-pass character needed in a
describing function argument?

Idea of Describing Function

+ + G( jω )G( jω )

f

(

gain N(A)

−−

Find frequency ω and amplitude A such that

G( jω ) ⋅ N(A) = −1

Idea of Describing Function

e(t) = A sinω t = Im (Aeiω t)

e(t) u(t)
N.L. u(t) =

a0

2
+

∞∑

n=1

(an cos nω t+ bn sin nω t)

e(t) u1(t)
N(A,ω )

u1(t) = a1 cos(ω t) + b1 sin(ω t)

= Im (N(A,ω )Aeiω t)

where the describing function is defined as

N(A,ω ) =
b1(ω ) + ia1(ω )

A
=[ U(iω ) ( N(A,ω )E(iω )

Existence of Limit Cycles

0 e u y
−

f (⋅) G(s)

−1/N(A)

A

G(iω )

y= G(iω )u = −G(iω )N(A)y [ G(iω ) = −
1

N(A)

The intersections of G(iω ) and −1/N(A) give ω and A for
possible limit cycles.

Harder if N is a function of both A and ω .

Example from exam 20090601 (a)
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to the nonlinearity f (x) above?
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Figure : Describing functions 1−−3
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Example from exam 20090601 (b)

Below we have the Nyquist and Bode curves of a linear system
G. Assume that there exists non-linearities corresponding to to
the three describing functions on previous page, and that each
of these would be used in a negative feedback connection with
G. For which do we possibly get limit cycles? If so, state
possible amplitudes of the limit cycles and if they are stable or
unstable?
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Since the third describing function fulfills that − 1
N(2) = −

1
2 and

G(iω o) ( −0.6, we understand that we have two intersections.
The first intersection occurs when A ( 1.8 and the second
intersection occurs when A ( 4.5.

Examining the describing function around the first intersection,
we see that − 1

N(A) goes from the outside of G(iω ) to the
inside, with increasing A. Hence, we conclude that the possible
limit cycle at A ( 1.8 is unstable. By similar argument, we
understand that the possible limit cycle at A ( 4.5 is stable.

What would the corresponding frequency of the limit cycles in
(b) be?

The frequency of all possible limit cycles is approximately 2.5
rad/s. To understand this, we see in the Bode plot that for
ω ( 2.5 we have that arg(G(iω )) ( −180.
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Question

Please repeat the most important facts about sliding modes.

Sliding Modes

ẋ =

{
f+(x), σ (x) > 0
f−(x), σ (x) < 0

σ (x) > 0

σ (x) < 0
f+

f−

The sliding set is where σ (x) = 0 and f+ and f− point
towards σ (x) = 0.

The sliding dynamics are ẋ = α f+ + (1−α ) f−, where α is
obtained from σ̇ = �σ

�x ẋ = 0.
(More precisely, find α such that the components of f+ and f−

perpendicular to the switching surface cancel.)

Sliding Mode Dynamics

The dynamics along the sliding surface σ (x) = 0 can also be
obtained by setting u = ueq ∈ [−1, 1] such that σ̇ (x) = 0.

ueq is called the equivalent control.

Phase plane for example in lecture 12.

Example

ẋ1 = 1− u/4
ẋ2 = u,
u = −sign x2, (i.e.,σ (x) = x2)

(1)

What is the sliding set and what is the sliding dynamics for the
system above?

If

σ (x) > 0 [ u = −1 [ f+ =
[
5/4
−1

]

σ (x) < 0 [ u = +1 [ f− =
[
3/4
1

]

The sliding set:

Find those values of the states at the switching curve for which

∇σ ⋅ f+ < 0

and
∇σ ⋅ f− > 0

(means that the vector fields on either side of σ (x) points
towards σ (x), i.e., the normal projection of f+ is negative and
the normal projection of f− on σ (x) is positive). If these
conditions are not fulfilled we will just “flow through σ (x)...”

In this example all the values along x2 = 0 will belong to the
switching set. ( Compare with example from lecture 9 where
the switching set will be restricted to x2 = 0 and −1 ≤ x1 ≤ 1,
see figure on slide above).
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The sliding dynamics:

Alternative 1.a.: Solve via normal projection on σ :

Pick α such that for ẋ = α f+ + (1−α ) f−, we get
σ̇ = 0 [ ẋ2 = α f+2 + (1−α ) f−2 = 0

Alternative 1.b.: (same thing put in other words)
(The normal component on either side of the switch curve should
balance out each other).

f+n =
[

0
−1

]
, f−n =

[
0
1

]

α f+n + (1−α ) f−n = 0 gives α = 1/2,
hence ẋ = α f+ + (1−α ) f− and ẋ1 = 1 is the sliding dynamics.

Alternative 2: Solve via Equivalent control

σ̇ (x)u=ueq = 0 and σ̇ = ẋ2 = u [ ueq = 0.

Hence ẋ1 = 1− ueq/4 = 1 is the sliding dynamics.

Question

Please repeat optimal control with some additional example

Problem Formulation (1)

Minimize
∫ t f

0
L(x(t), u(t)) dt+ φ(x(t f ))

ẋ(t) = f (x(t), u(t))
u(t) ∈ U , 0 ≤ t ≤ t f , t f given
x(0) = x0

x(t) ∈ Rn, u(t) ∈ Rm

U control constraints

The Maximum Principle (18.2)

Introduce the Hamiltonian

H(x, u, λ) = L(x, u) + λT(t)︸ ︷︷ ︸
1$n

f (x, u)︸ ︷︷ ︸
n$1

.

Suppose optimization problem (1) has a solution u∗(t), x∗(t).
Then the optimal solution must satisfy

min
u∈U

H(x∗(t), u, λ(t)) = H(x∗(t), u∗(t), λ(t)), 0 ≤ t ≤ t f ,

where λ(t) solves the adjoint equation

λ̇(t) = −HT
x (x∗(t), u∗(t), λ(t)), λ(t f ) = φ T

x (x∗(t f ))

where Hx =
�H
�x = [

�H
�x1

... �H
�xn
], φ x =

�φ
�x .

Problem Formulation (2)

As in (1) but with additions:

◮ r end constraints

Ψ(x(t f )) =




Ψ1(x(t f ))
...

Ψr(x(t f ))



= 0

◮ free end time t f

The Maximum Principle–General Case (18.4)

Introduce the Hamiltonian

H(x, u, λ , n0) = n0 L(x, u) + λT(t) f (x, u)

Suppose optimization problem (2) has a solution u∗(t), x∗(t).
Then there is a vector function λ(t), a number n0 ≥ 0, and a
vector µ ∈ Rr so that [n0 µT ] ,= 0 and

min
u∈U

H(x∗(t), u, λ(t), n0) = H(x∗(t), u∗(t), λ(t), n0), 0 ≤ t ≤ t f ,

where

λ̇(t) = −HT
x (x∗(t), u∗(t), λ(t), n0)

λ(t f ) = n0φ T
x (x∗(t f )) + ΨT

x (x∗(t f ))µ

Free end time t f

If the choice of t f is included in the optimization and/or final
state constraints, then two cases: n0 = 1 or n0 = 0.

Also, if the choice of t f is included in the optimization, there is
an extra constraint:

H(x∗(t f ), u∗(t f ), λ(t f ), n0) = 0

Example: Optimal storage control

Minimize
∫ t f

0
[u(t)ert + cx(t)]dt

subject to





ẋ = u 0 ≤ u ≤ M
x(0) = 0
x(t f ) ≥ A

x = stock size
u = production rate
r = production cost growth rate
c = storage cost
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Example: Optimal storage control I
in standard form

Minimize
∫ t f

0
[cx1(t) + u(t)x2(t)]dt

subject to





ẋ1 = u ẋ2 = rx2

x1(0) = 0 x2(0) = 1
0 ≤ u ≤ M
x1(t f ) = A

L(u, x) = ux2 + cx1 running cost
φ(x) = 0 final cost
ψ (x) = x1 final constraint
t f fixed

Optimal storage control II
Hamiltonian

H(x, u, λ , n0) = n0 L(x, u) + λ(t)T f (x, u)
= n0(ux2 + cx1) + λ1u+ λ2rx2

Adjoint equations

λ̇1 = −
�H
�x1

= −n0c λ̇2 = −
�H
�x2

= −n0u− λ2r

λ1(t f ) = n0
�Φ
�x1

(x∗(t f )) + µ
�Ψ
�x1

(x∗(t f )) = µ

λ2(t f ) = n0
�Φ
�x2

(x∗(t f )) + µ
�Ψ
�x2

(x∗(t f )) = 0

Should try two cases:
normal n0 = 1 and µ ≥ 0
abnormal n0 = 0 and µ > 0

Optimal storage control III

Abnormal case: n0 = 0 µ > 0

λ1(t) = µ ∀0 ≤ t ≤ t f

For every 0 ≤ t ≤ t f

u∗(t) ∈ argmin
u

H(x∗, u, λ , 0) = argmin
u

{µu}

u∗(t) = 0 ∀0 ≤ t ≤ t f

violates constraint
x1(t f ) = A

Optimal storage control IV
Normal case: n0 = 1 µ ≥ 0

λ1(t) = b− ct, b = µ − ct f x2(t) = ert

For every 0 ≤ t ≤ t f

u∗(t) ∈ argmin
u

H(x∗, u, λ , 1) = argmin
u

{u(ert + b− ct)}

u∗(t) =

{
M if ert + b− ct < 0
0 if ert + b− ct > 0

u∗(t) =
{

M if ert + b− ct < 0
0 if ert + b− ct > 0 =

{
M t1 ≤ t ≤ t2
0 otherwise

x(t f ) = A gives that M(t2 − t1) = A. To find t1, solve

min
0≤s≤A/M

{∫ s+A/M

s
M(ert + ct)dt+

∫ t f

s+A/M
cAdt

}

Exercise sessions and before the exam

◮ no lectures next week
◮ last exercise sessions (Tue Dec 13 and Wed Dec 14,

15-17)
◮ if needed do not hesitate to contact the TAs

(martin.karlsson@control.lth.se and
mattias.falt@control.lth.se) or the course responsible
(rantzer@control.lth.se) for consulting before the exam.

◮ There will be an extra exercise/consultation session on
Monday, Jan 9, 13.15-14.15 in the seminar room of
Automatic Control LTH.
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