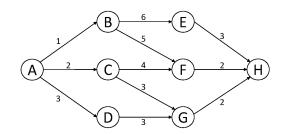
Dynamic programming

- ► Closed loop formulation of optimal control
- ▶ Intuitive methods of solution
- Guarantees global optimality
- ▶ Iteratively solves the problem starting at the end-time

'Life can only be understood backwards; but it must be lived forwards'

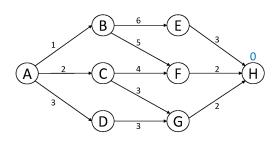
Kierkegaard

Example: Shortest path



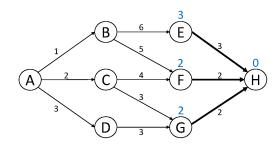
As an example we try to find the shortest path from "A" to "H" in the above graph.

Example: Shortest path



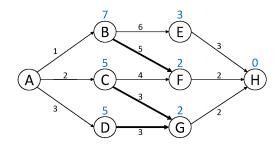
We proceed with backward induction. Once the final node is reached the remaining cost is 0.

Example: Shortest path



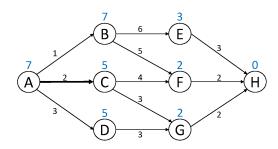
Knowing the cost at "H" to be 0, costs of getting from "E", "F" and "G" to "H" are easily computed.

Example: Shortest path



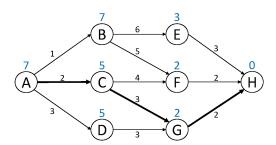
Now the optimal "cost-to-go" at "E", "F" and "G" can be used to get the optimal "cost-to-go" at "B", "C" and "D".

Example: Shortest path



In the next step we arrive at the origin.

Example: Shortest path



The procedure also gives us the optimal path.

Basic problem formulation: The system

First we assume that the system is in discrete time

$$x_{k+1} = f_k(x_k, u_k), \quad k = 0, 1, \dots, N-1$$

where x_k is the state $u_k \in U(x_k)$ is the control.

- $\qquad \qquad \textbf{Feedback-control implies } u_k = \mu_k(x_k)$
- ▶ In closed-loop form the system can thus be written

$$x_{k+1} = f_k(x_k, \mu_k(x_k))$$

Basic problem formulation: The cost

▶ We let $\mu = \{\mu_0, \mu_1, \dots, \mu_{N-1}\}$ and assume that we have an additive cost

$$J_{\mu}(x_0) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k))$$

- \blacktriangleright Total cost $J_{\mu}(x_0)$ is a function of both initial state x_0 and feedback law μ
- N is the horizon of the problem
 - $\qquad \qquad \textbf{Finite-horizon: } N < \infty$
 - ▶ Infinite-horizon: $N = \infty$

Basic formulation: Minimal cost and optimal strategy

An optimal policy μ^* is one that minimizes $J_{\mu}(x_0)$ (for all x_0)

$$J_{\mu^*}(x_0) = \min_{\mu \in \Pi} J_{\mu}(x_0)$$

optimization is performed over the set $\boldsymbol{\Pi},$ of admissible control policies

 For deterministic problems a control is admissible whenever

$$u_k = \mu_k(x_k) \in U(x_k)$$

The principle of optimality

Let $\mu^* = \{\mu_0^*, \mu_1^*, \dots, \mu_{N-1}^*\}$ be an optimal policy for the basic problem and assume that when applying μ^* , a given state x_i occurs at time i, when starting at x_0 .

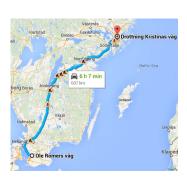
Consider the subproblem whereby we are in state x_i at time i and wish to minimize the "cost-to-go" from time i to time N

$$g_N(x_N) + \sum_{k=i}^{N-1} g_k(x_k, \mu_k(x_k)).$$

Principle of optimality

The truncated policy $\{\mu_i^*, \mu_{i+1}^*, \dots, \mu_{N-1}^*\}$ is optimal for the subproblem starting from x_i at time i.

Principle of optimality



- Google maps fastest route from LTH to KTH passes through Jönköping
- Subpath starting in Jönköping is the fastest route from Jönköping to KTH

The dynamic programming algorithm

Let

$$V_k(x_k) = g_N(x_N) + \sum_{j=k}^{N-1} g_j(x_j, \mu_j^*(x_j))$$

so that $V_k(x_k)$ is the optimal "cost-to-go" from time k to time N

The Bellman equation

For every initial state x_0 , the optimal cost $J^*(x_0)$ is given by the last step in the following backward-recursion.

$$egin{aligned} V_k(x_k) &= \min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k, w_k) + V_{k+1}(f_k(x_k, u_k))
ight] \ V_N(x_N) &= g_N(x_N) \end{aligned}$$

We get the optimal control "for-free"

$$\mu_k^*(x_k) = \underset{u_k \in U_k(x_k)}{\arg\min} \left[g_k(x_k, u_k, w_k) + V_{k+1}(f_k(x_k, u_k)) \right]$$

Managing spending and saving

Example

An investor holds a capital sum in a building society, which gives an interest rate of $\theta \times 100\%$ on the sum held at each time $k=0,1,\ldots,N-1$. The investor can chose to reinvest a portion u of the interest paid which then itself attracts interest. No amounts invested can ever be withdrawn. How should the investor act so as to maximize total reward by time N-1?

• We take as the state x_k the present income at time $k=0,1,\ldots,N-1$ and let $u_k\in[0,1]$ be the fraction of reinvested interest, hence

$$x_{k+1} = x_k + \theta u_k x_k =: f(x_k, u_k)$$

▶ The reward is $g_k(x,u) = (1-u)x$ and $g_N(x,u) \equiv 0$.

Managing spending and saving

▶ The optimality equation is V(N,x) = 0,

$$V(k,x) = \max_{0 \le u \le 1} \{ (1-u)x + V(k+1, (1+\theta u)x) \}, \quad k = 0, 1, \dots, N-1$$

▶ We get

$$\begin{split} V(N-1,x) &= \max_{0 \leq u \leq 1} \{(1-u)x + 0\} = x \\ V(N-2,x) &= \max_{0 \leq u \leq 1} \{(1-u)x + (1+\theta u)x\} \\ &= \max_{0 \leq u \leq 1} \{2x + (\theta-1)ux\} = \max\{2,1+\theta\}x = \rho_2 x \end{split}$$

▶ Guess: $V(N-s+1,x) = \rho_{s-1}x$, then

$$\begin{split} V(N-s,x) &= \max_{0 \leq u \leq 1} \{ (1-u)x + \rho_{s-1}(1+u\theta)x) \} \\ &= \max \{ 1 + \rho_{s-1}, (1+\theta)\rho_{s-1} \} x = \rho_s x \end{split}$$

Managing spending and saving

• We have thus verified that $V(N-s,x)=
ho_s x$, and found the recursion

$$\rho_s = \rho_{s-1} + \max\{1, \theta \rho_{s-1}\}$$

▶ Together with $\rho_1 = 1$ this gives

$$ho_s = \left\{ egin{array}{ll} s & ext{for } s \leq s^* \ s^* (1+ heta)^{s-s^*} & ext{otherwise}. \end{array}
ight.$$

► The optimal policy is then

$$u_k = \begin{cases} 1 & \text{for } k < N - s^* \\ 0 & \text{for } k \ge N - s^*. \end{cases}$$

Continuous time optimal control: The HJB-equation

- ▶ So far we have only considered the discrete time case
- Dynamic programming can also be applied in continuous time, this leads to the Hamilton-Jacobi-Bellman (HJB) equation:
- ► Benefits over PMP:
 - + Gives closed-loop optimal control in continuous time
 - + Sufficient condition of optimality
- ▶ Drawbacks:
 - Requires solving a highly non-linear PDE
 - Well-posedness of the PDE problem proved only in the '80s

Continuous time problem formulation

In continuous time the system is given by

$$\dot{x}(t) = f(x(t), u(t)), \quad t \in [0, T]$$

with $x(0) = x_0$ and $u(t) \in U(x(t))$, for all $t \in [0, T]$.

▶ We define the cost as

$$J(x_0) = \phi(x(T)) + \int_0^T L(x(t), u(t)) dt$$

ightharpoonup With optimal "cost-to-go" from (t,x)

$$V(t,x) = \min_{u} \left\{ \phi(x(T)) + \int_{t}^{T} L(x(t),u(t))dt \right\}$$

The HJB-equation: Informal derivation

- lacktriangledown divide [0,T] into N subintervals of length $\delta=T/N$
- ▶ Let $x_k = x(k\delta)$ and $u_k = u(k\delta)$, for k = 0, 1, ..., N and approximate the system by

$$x_{k+1} = x_k + f(x_k, u_k)\delta, \quad k = 0, 1, ..., N.$$

▶ The optimal "cost-to-go" is approximated by

$$V(k\delta, x) = \min_{u_0, \dots, u_{N-1}} [\phi(x_N) + \sum_{k=0}^{N-1} L(x_k, u_k)\delta]$$

The HJB-equation: Informal derivation

Dynamic programming now yields

$$\begin{split} V(k\delta,x) &= \min_{u \in U} [L(x,u)\delta + V((k+1)\delta,x + f(x,u)\delta)], \\ V(N\delta,x) &= \phi(x). \end{split}$$

For small δ we get (with $t = k\delta$)

$$V(t+\delta,x+f(x,u)\delta) \approx V(t,x) + V_t(t,x)\delta + \nabla_x V(t,x) \cdot f(x,u)\delta$$

▶ Inserting this in the DP equation gives

$$\begin{split} V(t,x) \approx & \min_{u \in U} [L(x,u)\delta + V(t,x) \\ & + V_t(t,x)\delta + \nabla_x V(t,x) \cdot f(x,u)\delta] \end{split}$$

The HJB-equation

The Hamilton-Jacobi-Bellman equation

For every initial state x_0 , the optimal cost is given by $J^*(x_0)=V(0,x_0)$ where V(t,x) is the solution to the PDE

$$V_t(t,x) = -\min_{u \in U} \left[L(x,u) + \nabla_x V(t,x) \cdot f(x,u) \right]$$
$$V(T,x) = \phi(x)$$

As before the optimal control is given in feedback form by

$$\mu^*(t,x) = \operatorname*{arg\,min}_{u \in U} \left[L(x,u) + \nabla_x V(t,x) \cdot f(x,u) \right]$$

Example: The HJB-equation

Example

Consider the simple example involving the scalar system

$$\dot{x}(t) = u(t),$$

with the constraint $|u(t)| \leq 1$ for all $t \in [0,T]$ and the cost

$$J(x_0) = \frac{1}{2}(x(T))^2.$$

► The HJB equation for this problem is

$$V_t(t,x) = -\min_{|u(t)| \le 1} [V_x(t,x)u]$$

with terminal condition $V(T,x) = x^2/2$.

Example: The HJB-equation

► An optimal control for this problem is

$$\mu(t,x) = \begin{cases} 1 & \text{for } x < 0 \\ 0 & \text{for } x = 0 \\ -1 & \text{for } x > 0 \end{cases}$$

▶ The optimal "cost-to-go" with this control is

$$V(t,x) = \frac{1}{2}(\max\{0,|x| - (T-t)\})^2$$

Example: The HJB-equation

For |x| > T - t we have $V(t, x) = 1/2(|x| - (T - t))^2$, hence

$$\begin{split} V_t &= |x| - (T-t) \\ \min_{|u(t)| \leq 1} [V_x(t,x)u] &= -\mathrm{sgn}(x)V_x(t,x) = -\mathrm{sgn}(x)^2(|x| - (T-t)) \\ &= -(|x| - (T-t)) \end{split}$$

For $|x| \le T - t$ we have V(t,x) = 0 and the HJB equation holds trivially

Infinite horizon problem

Assume that the final cost is $\phi(x(T))=0$ and the final time $T\to +\infty$, and that there exists some control such that the total cost remains bounded in the limit. Hence, we want to solve

$$\min_{u} \int_{0}^{+\infty} L(x(t), u(t)) dt, \qquad x(0) = x_0$$

It is intuitive that the cost-to-go from (x, t)

$$V(x,t) = \min_{u} \int_{t}^{T} L(x(t), u(t)) dt = V(x)$$

does not depend on the initial time but only on the initial state.

The HJB equation then becomes

$$0 = \min_{x} \left[L(x, u) + \nabla_x V(x) \cdot f(x, u) \right]$$

(Observe that, for scalar problems, this is an ODE!)

Dynamics Programming for LQ control

Consider the optimal feedback control problem for an LTI system $\dot{x}=Ax+Bu$ with cost

$$J = \int_0^T \left(x'(t)Qx(t) + u'(t)Ru(t) \right) dt + x(T)'Mx(T)$$

where Q,R,M are symmetric positive definite. The HJB eqn reads

$$0 = \min_{u} \left\{ x'Qx + u'Ru + V_t + V_x'(Ax + Bu) \right\}$$

with final time condition V(T,x) = x'Mx.

Infinite horizon problem: example

$$\min_{u} \int_{0}^{+\infty} (x^{4}(t) + u^{4}(t))dt, \qquad x(0) = x_{0}$$

From the stationary HJB eqn we get

$$0 = \min_{u} \left\{ x^4 + u^4 + V_x(x) \cdot u \right\}$$

and putting the derivative with respect to u equal to 0

$$x^4 = 3\left(\frac{1}{4}V_x(x)\right)^{4/3}$$

which gives $V_x(x)=\pm 4(\frac{1}{3})^{3/4}x^3$ and the + sign should be chosen to have V positive definite)since L is. This gives the optimal feedback control law

$$u^*(x) = -(\frac{1}{4}V_x(x))^{1/3} = -(\frac{1}{3})^{1/4}x$$

Dynamics Programming for LQ control

With the ansatz V(x,t)=x'P(t)x with symmetric P(t), we get that the optimal control is in the form

$$u^* = -R^{-1}B'Px$$

and P = P(t) satisfies the following differential eqn

$$\dot{P} = -PA - A'P - Q + PBR^{-1}B'P$$
 $P(T) = M$

which is called the differential Riccati equation (DRE).

For the infinite horizon problem this reduces to

$$0 = -PA - A'P - Q + PBR^{-1}B'P$$

which is called the algebraic Riccati equation (ARE).

Bonus: Dynamic programming and randomness

- ▶ So far we have only considered deterministic systems
- ► For deterministic systems open-loop and closed-loop control coincide
 - Minimizing over admissible policies $\mu = \{\mu_0 \dots, \mu_{N-1}\}$ equivalent to minimizing over control vectors $\{u_0, \dots, u_{N-1}\}$
 - Given μ , future states are perfectly predictable through

$$x_{k+1} = f_k(x_k, \mu_k(x_k)), \quad k = 0, 1, \dots, N-1$$

Corresponding controls perfectly predictable through

$$u_k = \mu_k(x_k)$$

When introducing randomness in the state evolution, closing the loop becomes important

Problem with randomness: The system

 We assume that the system is in discrete time but add randomness

$$x_{k+1} = f_k(x_k, u_k, w_k)$$

where x_k is the state $u_k \in U(x_k)$ is the control and w_k is a noise term.

- ▶ The distribution of the noise term w_k only depends on the past through x_k and u_k
- In closed-loop form the system can thus be written

$$x_{k+1} = f_k(x_k, \mu_k(x_k), w_k)$$

Basic problem formulation: The cost

► In the random case we get the cost

$$J_{\mu}(x_0) = E\left[g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right]$$

where expectation is taken over the random variables $\boldsymbol{x_k}$ and $\boldsymbol{w_k}$

Expected cost $J_{\mu}(x_0)$ is a function of both initial state x_0 and feedback law μ

Minimal cost and optimal strategy

An optimal policy μ^* is a policy that minimizes $J_{\mu}(x_0)$ (for every x_0)

$$J_{\mu^*}(x_0) = \min_{\mu \in \Pi} J_{\mu}(x_0)$$

- \blacktriangleright Optimization is performed over the set, $\Pi,$ of admissible controls

 - *u_k* does not depend on future events
- ▶ Optimal control is in feedback-form $u_k^* = \mu_k^*(x_k^*)$

The value of information

Two chess players play a two round chess match. Winning one round gives 1 point, drawing gives 1/2 and losing gives 0. If the score after the two rounds is tied the match will be decided by sudden death.

Player 1 has the opportunity of adapting his strategy by selecting to play either *timid* or *bold*,

- Finite Timid: Draws with probability p_d and loses with probability $1-p_d$ (no chance of winning)
- ▶ Bold: Wins with probability p_w and loses with probability $1-p_w$ (no chance of drawing)

Two round chess match

Player 1 is thus faced with the problem of finding the strategy that maximizes his probability of winning the match.

Closed-loop strategy

Here we start with a bold strategy in the first round and choose

- 1. Bold-timid: If score is 1-0 after Round 1
- 2. Bold-bold: If score is 0-1 after Round 1

Closed-loop probability of win
$$= p_w p_d + p_w^2 (1-p_d) + (1-p_w) p_w^2$$

 $= p_w^2 + p_w (1-p_w) (p_w + p_d)$

Comparing with the open-loop case gives

Value of information
$$= p_w^2 + p_w(1-p_w)(p_w+p_d)$$

$$- p_w^2 - p_w(1-p_w)\max(2p_w,p_d)$$

$$= p_w(1-p_w)\min(p_w,p_d-p_w)$$

Example: Selling an asset

Optimal asset selling

Consider a person having an asset that has to sell within N time periods. Every time period he gets a new offer, that he can either accept or reject. These offers are given by a sequence of independent random variables $w_0, w_1, \ldots, w_{N-1}$. When the seller accepts an offer he can invest the money at fixed interest rate r>0. The sellers objective is to maximize the revenue at day N.

- ightharpoonup We let $u_k=0$ represent rejecting to k^{th} offer and $u_k=1$ when accepting offer k
- We also introduce the terminal state T that x_k enters once the asset is sold and get the state equation $x_{k+1} = f(x_k, w_k)$, where

$$f(x_k,w_k) = \begin{cases} T & \text{if } x_k = T \text{ (sold), or if } x_k \neq T \text{ and } u_k = 1 \text{ (sell),} \\ w_k & \text{otherwise.} \end{cases}$$

Example: Selling an asset

► This gives the DP algorithm

$$V_N(x_N) = \begin{cases} x_N & \text{if } x_N \neq T \\ 0 & \text{if } x_N = T \end{cases}$$

and

$$V_k(x_k) = \begin{cases} \max\{(1+r)^{N-k}x_k, E[V_{k+1}(w_k)]\} & x_k \neq T \\ 0 & x_k = T. \end{cases}$$

► We thus get the policy

$$u_k = \begin{cases} 1 & \text{if } x_k > \alpha_k \\ 0 & \text{if } x_k < \alpha_k, \end{cases}$$

where

$$\alpha_k = \frac{E[V_{k+1}(w_k)]}{(1+r)^{N-k}}$$

Open-loop strategy

With an open-loop strategy Player 1 has to decide beforehand how to play in each round.

- 1. Timid-timid: Probability $p_d^2 p_w$ of winning the match
- 2. Bold-bold: Probability $p_w^2 + 2p_w^2(1-p_w) = p_w^2(3-2p_w)$ of winning the match
- 3. Timid-bold: Probability $p_d p_w + (1 p_d) p_w^2$ of winning match
- 4. Bold-timid: Probability $p_w p_d + p_w^2 (1 p_d)$ of winning match

Open-loop win probability =
$$\max(p_w^2(3-2p_w), p_wp_d + p_w^2(1-p_d))$$

= $p_w^2 + p_w(1-p_w) \max(2p_w, p_d)$

Optimal open loop strategy:

- $ho_d > 2p_w$: Timid-bold or bold-timid
- ▶ $p_d < 2p_w$: Bold-bold
- $p_d = 2p_w$: All except timid-timid are optimal

The dynamic programming algorithm

Now,

$$V_k(x_k) = E\left[g_N(x_N) + \sum_{j=k}^{N-1} g_j(x_j, \mu_j^*(x_j), w_j)
ight]$$

The Bellman equation

For every initial state x_0 , the optimal cost $J^*(x_0)$ is given by the last step in the following backward-recursion.

$$\begin{split} V_k(x_k) &= \min_{u_k \in U_k(x_k)} E\left[g_k(x_k, u_k, w_k) + V_{k+1}(f_k(x_k, u_k, w_k))\right] \\ V_N(x_N) &= g_N(x_N) \end{split}$$

We get the optimal control "for-free"

$$\mu_k^*(x_k) = \underset{u_k \in U_k(x_k)}{\arg \min} E\left[g_k(x_k, u_k, w_k) + V_{k+1}(f_k(x_k, u_k, w_k))\right]$$

Example: Selling an asset

► The corresponding reward function may be written as

$$E\left[g_N(x_N) + \sum_{k=i}^{N-1} g_k(x_k, u_k, w_k)
ight]$$

where

$$g_N(x_N) = \begin{cases} x_N & \text{if } x_N \neq T \\ 0 & \text{if } x_N = T. \end{cases}$$

and

$$g_k(x_k,u_k,w_k) = \begin{cases} \left(1+r\right)^{N-k} x_k & \text{if } x_k \neq T \text{ and } u_k = 1 \text{ (sell)}, \\ 0 & \text{otherwise}. \end{cases}$$

Example: Selling an asset

- lacktriangle Let us now assume that the w_k are identically distributed
- Introduce the functions $G_k(x_k) = (1+r)^{k-N}V_k(x_k)$, hence for $x_N, x_k \neq T$

$$G_N(x_N) = x_N$$

 $G_k(x_k) = \max\{x_k, (1+r)^{-1}E[G_{k+1}(w)]\}$

and

$$\alpha_k = \frac{E[G_{k+1}(w)]}{1 + \cdots}$$

- Now $G_{N-1}(x) \geq G_N(x)$ and if $G_{j+1}(x) \geq G_{j+2}(x)$ then $G_j(x) \geq G_{j+1}(x)$, hence by induction $G_k(x) \geq G_{k+1}(x)$ for $k=0,\ldots,N-1$
- ightharpoonup This shows that α_k is a decreasing sequence

Example: Selling an asset

▶ To compute the sequence α_k we note that $G_k(x_k) = \max\{x_k, \alpha_k\}$, hence

$$\begin{split} \alpha_k &= \frac{1}{1+r} E[G_{k+1}(w)] \\ &= \frac{1}{1+r} \alpha_{k+1} P[w \leq \alpha_{k+1}] + \frac{1}{1+r} \int_{\alpha_{k+1}}^{\infty} x f_w(x) dx \end{split}$$

Since by definition $\alpha_N=0$ this gives a recursion for $\alpha_k,$ $k=1,\ldots,N$

Example: Selling an asset

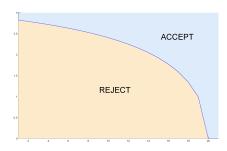
- Assume that w is Exp(1) distributed *i.e.* $f_w(x) = e^{-x}$
- ▶ We have $P[w \le \alpha_{k+1}] = 1 e^{-\alpha_{k+1}}$ and

$$\int_{\alpha_{k+1}}^{\infty} x f_w(x) dx = e^{-\alpha_{k+1}} (\alpha_{k+1} + 1)$$

► This gives the recursion

$$\begin{split} \alpha_k &= \frac{1}{1+r} \alpha_{k+1} \big(1 - e^{-\alpha_{k+1}} \big) + \frac{1}{1+r} e^{-\alpha_{k+1}} \big(\alpha_{k+1} + 1 \big) \\ &= \frac{1}{1+r} \big(\alpha_{k+1} + e^{-\alpha_{k+1}} \big) \end{split}$$

Example: Selling an asset



The figure shows the optimal policy for r=0.01 and N=20.

Optimal stopping

- Poptimal stopping problems are a special case of the basic problem in which the control can only take two values e.g. $\{0,1\}$ one of which renders the cost (reward) $\phi_k(x)$ and makes the system enter an absorbing terminal state T after which no further cost is incurred
- ► The Dynamic programming algorithm for optimal stopping problems can be written

$$\begin{aligned} V_N(x_N) &= \phi_N(x_N) \\ V_k(x_k) &= \min\{\phi_k(x_k), E\left[V_{k+1}(f(x_k, w_k))\right]\} \end{aligned}$$

For optimal stopping problems we can define a set $T_k = \{x: \phi_k(x) < E\left[V_{k+1}(f(x_k, w_k))\right]\}$ called the *termination set*

Optimal stopping: The one-stage look-ahead rule

- ► Sometimes extracting the optimal policy by backward iteration in the DP algorithm is complex
- For a specific type of problems we do not need to solve the DP however
- ▶ Define the set $S = \{(k, x) : \phi_k(x) < E \left[\phi_{k+1}(f(x_k, w_k))\right]\}$
 - If $(k, x_k) \in S$ it is better to stop now than to continue and stop in the next step
- Assume that the set S is absorbing in the sense that $(k+1, f(x_k, w_k)) \in S$ whenever $(k, x_k) \in S$
- ▶ Then it is optimal to stop iff $(k, x_k) \in S$.