Lecture 9 — Nonlinear Control Design **Course Outline** Lecture 1-3 Modelling and basic phenomena (linearization, phase plane, limit cycles) Exact-linearization Lyapunov-based design Lecture 4-6 Analysis methods ► Lab 2 (Lyapunov, circle criterion, describing functions) Adaptive control Lecture 7-8 Common nonlinearities Sliding modes control (Saturation, friction, backlash, quantization) Literature: [Khalil, ch.s 13, 14.1,14.2] and [Glad-Ljung,ch.17] Lecture 9-13 Design methods (Lyapunov methods, optimal control) Lecture 14 Summary

Exact Feedback Linearization

Idea:

Find state feedback u = u(x, v) so that the nonlinear system

 $\dot{x} = f(x) + g(x)u$

turns into the linear system

$$\dot{x} = Ax + Bv$$

and then apply linear control design method.

Introduce new control variable \boldsymbol{v} and let

 $u = m\ell^2 v + d\dot{\theta} + m\ell g\cos\theta$

Then

 $\ddot{\theta}=v$

Choose e.g. a PD-controller

 $v = v(\theta, \dot{\theta}) = k_p(\theta_{\mathsf{ref}} - \theta) - k_d \dot{\theta}$

This gives the closed-loop system:

 $\ddot{\theta} + k_d \dot{\theta} + k_p \theta = k_p \theta_{\text{ref}}$

Hence, $u = m\ell^2 [k_p(\theta - \theta_{ref}) - k_d\dot{\theta}] + d\dot{\theta} + m\ell g\cos\theta$

Computed torque

The computed torque (also known as "Exact linearization", "dynamic inversion" , etc.)

$$u = M(\theta)v + C(\theta, \dot{\theta})\dot{\theta} + G(\theta)$$

$$v = K_p(\theta_{ref} - \theta) - K_d\dot{\theta},$$
(1)

gives closed-loop system

$$\ddot{\theta} + K_d \dot{\theta} + K_p \theta = K_p \theta_{Ref}$$

The matrices K_d and K_p can be chosen diagonal (no cross-terms) and then this decouples into n independent second-order equations.

Exact linearization: example [one-link robot]

 $m\ell^2\ddot{\theta} + d\dot{\theta} + m\ell g\cos\theta = u$

where d is the viscous damping.

The control $u = \tau$ is the applied torque

Design state feedback controller u = u(x) with $x = (\theta, \dot{\theta})^T$

Multi-link robot (n-joints)

General form

$$M(\theta)\ddot{\theta} + C(\theta, \dot{\theta})\dot{\theta} + G(\theta) = u, \qquad \theta \in R^{i}$$

Called fully actuated if n indep. actuators,

- $M \quad n \times n$ inertia matrix, $M = M^T > 0$
- $C\dot{\theta}$ $n \times 1$ vector of centrifugal and Coriolis forces
- $G = n \times 1$ vector of gravitation terms

Lyapunov-Based Control Design Methods

$$\dot{x} = f(x, u)$$

• Select Lyapunov function V(x) for stability verification

- \blacktriangleright Find state feedback u=u(x) that makes V decreasing
- \blacktriangleright Method depends on structure of f

Examples are energy shaping as in Lab 2 and, e.g., **Back-stepping control design**, which require certain f discussed later.

 $\mathbf{2}$

Adaptive Noise Cancellation Revisited

$$\dot{x} + ax = bu$$
$$\dot{\hat{x}} + \hat{a}\hat{x} = \hat{b}u$$

 $\text{Introduce } \widetilde{x} = x - \widehat{x}, \ \ \widetilde{a} = a - \widehat{a}, \ \ \widetilde{b} = b - \widehat{b}.$

Want to design adaptation law so that $\widetilde{x} \to 0$

A Control Design Idea, and a Problem

Assume $V(x) = x^T P x$, P > 0, represents the energy of

$$\dot{x} = Ax + Bu, \qquad u \in [-1, 1]$$

Idea: Choose \boldsymbol{u} such that \boldsymbol{V} decays as fast as possible

$$\dot{V} = x^T (A^T P + A P) x + 2B^T P x \cdot u$$
$$u = -\operatorname{sgn}(B^T P x)$$

The following situation might then occur ("system is not Lipschitz")

$$\begin{array}{c} \dot{x} \\ B^T P x = 0 \\ \dot{x} \\ \dot{x} \end{array}$$

Sliding Mode

If f^+ and f^- both points towards $\sigma(x)=0,$ what will happen then?

The sliding dynamics are $\dot{x} = \alpha f^+ + (1 - \alpha)f^-$, where α is obtained from $\frac{d\sigma}{dt} = \frac{\partial\sigma}{\partial x} \cdot \dot{x} = 0$ on $\{\sigma(x) = 0\}$.

More precisely, find α such that the components of f^+ and f^- perpendicular to the switching surface cancel: $\alpha f_{\perp}^+ + (1-\alpha) f_{\perp}^- = 0$ The resulting dynamics is then the sum of the corresponding components along the surface.

$$\dot{x}_1 = -x_2 + u = -x_2 - \operatorname{sgn}(x_2)$$
$$\dot{x}_2 = x_1 - x_2 + u = x_1 - x_2 - \operatorname{sgn}(x_2)$$

$$f^+ = \begin{bmatrix} -x_2 - 1\\ x_1 - x_2 - 1 \end{bmatrix}$$
 $f^- = \begin{bmatrix} -x_2 + 1\\ x_1 - x_2 + 1 \end{bmatrix}$

$$\sigma(x) = x_2 = 0 \Rightarrow \underline{x_2 = 0}$$
$$\frac{\partial \sigma}{\partial x} f^+ = \begin{bmatrix} 0 & 1 \end{bmatrix} f^+ = x_1 - x_2 - 1 < 0 \Rightarrow \underline{x_1 < 1}$$
$$\frac{\partial \sigma}{\partial x} f^- = \begin{bmatrix} 0 & 1 \end{bmatrix} f^- = x_1 - x_2 + 1 > 0 \Rightarrow \underline{x_1 > -1}$$

We will thus have a sliding set for $\{-1 < x_1 < 1, x_2 = 0\}$

Let us try the Lyapunov function

$$\begin{split} V &= \frac{1}{2} (\widetilde{x}^2 + \gamma_a \widetilde{a}^2 + \gamma_b \widetilde{b}^2) \\ \dot{V} &= \widetilde{x} \dot{\widetilde{x}} + \gamma_a \widetilde{a} \dot{\widetilde{a}} + \gamma_b \widetilde{b} \dot{\widetilde{b}} = \\ &= \widetilde{x} (-a \widetilde{x} - \widetilde{a} \widehat{x} + \widetilde{b} u) + \gamma_a \widetilde{a} \dot{\widetilde{a}} + \gamma_b \widetilde{b} \dot{\widetilde{b}} = -a \widetilde{x}^2 \end{split}$$

where the last equality follows if we choose

$$\dot{\tilde{a}} = -\dot{\hat{a}} = \frac{1}{\gamma_a} \tilde{x} \hat{x}$$
 $\dot{\tilde{b}} = -\dot{\hat{b}} = -\frac{1}{\gamma_b} \tilde{x} u$

Invariant set: $\tilde{x} = 0$.

This proves that $\widetilde{x} \to 0$.

(The parameters \tilde{a} and \tilde{b} do not necessarily converge: $u \equiv 0$.)

Sliding Modes

$$\dot{x} = \begin{cases} f^+(x), & \sigma(x) > 0 \\ f^-(x), & \sigma(x) < 0 \end{cases} \qquad \overbrace{f^+}^{f^+ \sigma(x) > 0} \\ f^-(x) = \sigma(x) < 0 \end{cases}$$

The switching set/ sliding set is where $\sigma(x) = 0$ and f^+ and f^- point towards $\sigma(x) = 0$.

The switching set/ sliding set is given by \boldsymbol{x} such that

$$\sigma(x) = 0$$
$$\frac{\partial \sigma}{\partial x} f^+ = (\nabla \sigma) f^+ < 0$$
$$\frac{\partial \sigma}{\partial x} f^- = (\nabla \sigma) f^- > 0$$

Note: If f^+ and f^- point "in the same direction" on both sides of the set $\sigma(x)=0$ then the solution curves will just pass through and this region will not belong to the sliding set.

Example

$$\dot{x} = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u = Ax + Bu$$
$$u = -\operatorname{sgn}\sigma(x) = -\operatorname{sgn}x_2 = -\operatorname{sgn}(Cx)$$

which means that

$$\dot{x} = \begin{cases} Ax - B, & x_2 > 0\\ Ax + B, & x_2 < 0 \end{cases}$$

Determine the *sliding set* and the *sliding dynamics*.

The normal projections of $(f^+,\,f^-)$ to $\sigma(x)=x_2=0$ are

$$f_{\perp}^{+} = \begin{bmatrix} 0 \\ x_1 - x_2 - 1 \end{bmatrix} \qquad f_{\perp}^{-} = \begin{bmatrix} 0 \\ x_1 - x_2 + 1 \end{bmatrix}$$

Find $\alpha \in [0,1]$ such that $\alpha f_{\perp}^+ + (1-\alpha)f_{\perp}^- = 0$ on $\{x_2=0\}$

$$lpha(x_1 - x_2 - 1) + (1 - lpha)(x_1 - x_2 + 1) = 0$$

 \Rightarrow
 $lpha = \frac{x_1 + 1}{2}$ as $x_2 = 0$

Note: $\alpha \in [0,1] \Leftrightarrow x_1 \in [-1,1]$

$$\begin{split} \dot{x} &= \alpha f^+ + (1-\alpha) f^- \\ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} &= \alpha \begin{bmatrix} -x_2 - 1 \\ x_1 - x_2 - 1 \end{bmatrix} + (1-\alpha) \begin{bmatrix} -x_2 + 1 \\ x_1 - x_2 + 1 \end{bmatrix} \\ &= \begin{bmatrix} -2\alpha - x_2 - 1 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} -x_1 \\ 0 \end{bmatrix} \end{split}$$

where we inserted $x_2=0$ and $\alpha=\frac{x_1+1}{2}$ We see that on the sliding set $\{-1< x<1,\, x_2=0\}$ we have

$$\begin{aligned} \dot{x}_1 &= -x_1 \\ \dot{x}_2 &= 0 \end{aligned}$$

For any initial condition starting on the sliding set, there will be exponential convergence to $x_1 = x_2 = 0$.

Equivalent Control

Assume

$$\dot{x} = f(x) + g(x)u$$
$$u = -\operatorname{sgn}\sigma(x)$$

has a sliding set on $\sigma(x)=0.$ Then, for x(t) staying on the sliding set we should have

$$0 = \dot{\sigma}(x) = \frac{\partial \sigma}{\partial x} \cdot \frac{dx}{dt} = \frac{\partial \sigma}{\partial x} \left(f(x) + g(x)u \right)$$

The equivalent control is thus given by solving

$$u_{\rm eq} = -\left(\frac{\partial\sigma}{\partial x}g(x)\right)^{-1}\frac{\partial\sigma}{\partial x}f(x)$$

for all those x such that $\sigma(x) = 0$ and $\frac{\partial \sigma}{\partial x} g(x) \neq 0$.

More on the Sliding Dynamics

If CB > 0 then the dynamics along a sliding set in Cx = 0 is

$$\dot{x} = Ax + Bu_{\rm eq} = \bigg(I - (CB)^{-1}BC\bigg)Ax,$$

One can show that the eigenvalues of $(I-(CB)^{-1}BC)A$ equals the zeros of $G(s)=C(sI-A)^{-1}B.$ (exercise for PhD students)

Sliding Mode Control gives Closed-Loop Stability

Consider $\mathcal{V}(x) = \sigma^2(x)/2$ with $\sigma(x) = p^T x$. Then,

$$\mathcal{V} = \sigma(x)\dot{\sigma}(x) = x^{T} p \left(p^{T} f(x) + p^{T} g(x)u \right)$$

With the chosen control law, we get

 $\dot{\mathcal{V}} = -\mu\sigma(x)\mathsf{sgn}\sigma(x) \le 0$

so $\sigma(x) \to 0$ as $t \to +\infty.$ In fact, one can prove that this occurs in finite time.

 $0 = \sigma(x) = p_1 x_1 + \dots + p_{n-1} x_{n-1} + p_n x_n$ $= p_1 x_n^{(n-1)} + \dots + p_{n-1} x_n^{(1)} + p_n x_n^{(0)}$

where $x^{(k)}$ denote time derivative. P stable gives that $x(t) \rightarrow 0$.

Note: \mathcal{V} by itself does not guarantee stability. It only guarantees convergence to the line $\{\sigma(x) = 0\} = \{p^T x = 0\}.$

Sliding Mode Dynamics

The dynamics along the sliding set in $\sigma(x) = 0$ can also be obtained by finding $u = u_{eq} \in [-1, 1]$ such that $\dot{\sigma}(x) = 0$. u_{eq} is called the **equivalent control**.

Equivalent Control for Linear System

$$\begin{split} \dot{x} &= Ax + Bu \\ u &= - \mathsf{sgn} \sigma(x) = - \mathsf{sgn}(Cx) \end{split}$$

Assume CB invertible. The sliding set lies in $\sigma(x) = Cx = 0$.

$$0 = \dot{\sigma}(x) = \frac{d\sigma}{dx} \left(f(x) + g(x)u \right) = C \left(Ax + Bu_{\text{eq}} \right)$$

gives $CBu_{eq} = -CAx$.

Example (cont'd) For the previous system

$$u_{eq} = -(CB)^{-1}CAx = -(x_1 - x_2)/1 = -x_1$$

because $\sigma(x) = x_2 = 0$. Same result as above.

Design of Sliding Mode Controller

Idea: Design a control law that forces the state to $\sigma(x)=0.$ Choose $\sigma(x)$ such that the sliding mode tends to the origin. Assume system has form

sume system has form

u

$$\frac{d}{dt} \begin{bmatrix} x_1\\x_2\\\vdots\\x_n \end{bmatrix} = \begin{bmatrix} f_1(x) + g_1(x)u\\x_1\\\vdots\\x_{n-1} \end{bmatrix} = f(x) + g(x)u$$

Choose control law

$$=-\frac{p^Tf(x)}{p^Tg(x)}-\frac{\mu}{p^Tg(x)}\mathrm{sgn}\sigma(x),$$

where $\mu > 0$ is a design parameter, $\sigma(x) = p^T x$, and $p^T = \begin{bmatrix} p_1 & \dots & p_n \end{bmatrix}$ represents a stable polynomial.

Time to Switch

Consider an initial point x such that $\sigma_0 = \sigma(x) > 0$. Then

$$\dot{\sigma} = p^T \dot{x} = p^T (f + gu) = -\mu \mathrm{sgn}(\sigma) = -\mu$$

Hence, the time to the first switch is

$$t_{\rm s} = \frac{\sigma_0}{\mu} < \infty$$

Note that $t_s \to 0$ as $\mu \to \infty$.

Example—Sliding Mode Controller

Design state-feedback controller for

$$\dot{x} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$$

Choose $p_1s+p_2=s+1$ so that $\sigma(x)=x_1+x_2.$ The controller is given by

$$u = -\frac{p^T A x}{p^T B} - \frac{\mu}{p^T B} \mathsf{sgn}\sigma(x)$$
$$= -2x_1 - \mu \mathsf{sgn}(x_1 + x_2)$$

Time Plots

Phase Portrait

Simulation with $\mu = 0.5$. Note the sliding set is in $\sigma(x) = x_1 + x_2$.

The Sliding Mode Controller is Robust

Assume that only a model $\dot{x}=\widehat{f}(x)+\widehat{g}(x)u$ of the true system $\dot{x}=f(x)+g(x)u$ is known. Still, however,

$$\dot{V} = \sigma(x) \bigg[\frac{p^T (f \hat{g}^T - \hat{f} g^T) p}{p^T \hat{g}} - \mu \frac{p^T g}{p^T \hat{g}} \mathsf{sgn}\sigma(x) \bigg] < 0$$

if $\operatorname{sgn}(p^Tg) = \operatorname{sgn}(p^T\widehat{g})$ and $\mu > 0$ is sufficiently large.

Closed-loop system is quite robust against model errors!

(High gain control with stable open loop zeros)

ABS Breaking

By moving along the dashed arrow, an ABS controller attains higher average friction than what is obtained by locked wheels. Ideally, the slip ratio should be kept at the maximizing value λ_{max} .

 Next Lectures
 Next Lecture

 • L10-L12: Optimal control methods
 • Optimal control

 • L13: Other synthesis methods
 • Read chapter 18 in [Glad & Ljung] for preparation.

 • L14: Course summary
 • Read chapter 18 in [Glad & Ljung] for preparation.

Choice of hysteresis or smoothing parameter can be critical for performance

A relay with hysteresis or a smooth (e.g. linear) region is often

used in practice.

More complicated structures with several relays possible. Harder to design and analyze.

Implementation