Lecture 4 — Lyapunov Stability	Today's Goal
Material • Glad & Ljung Ch. 12.2 • Khalil Ch. 4.1-4.3 • Lecture notes	 To be able to prove local and global stability of an equilibrium point using Lyapunov's method show stability of a set (e.g., an equilibrium, or a limit cycle) using La Salle's invariant set theorem.
Alexandr Mihailovich Lyapunov (1857–1918)	Main idea
	 Lyapunov formalized the idea:
	If the total energy is dissipated, then the system must be stable. Main benefit: By looking at how an energy-like function V (a so called <i>Lyapunov function</i>) changes over time, we might conclude that a system is stable or asymptotically stable without solving the nonlinear differential equation.
	Analysis: Check if V is decreasing with time:
Master thesis "On the stability of ellipsoidal forms of equilibrium of	• Continuous time: $\frac{dV}{dt} < 0$
rotating fluids," St. Petersburg University, 1884.	► Discrete time: $V(k+1) - V(k) < 0$
1892.	Main question: How to find a Lyapunov function?
Examples	A Motivating Example
 Start with a Lyapunov candidate V to measure e.g., "size"¹ of state and/or output error, "size" of deviation from true parameters, energy difference from desired equilibrium, weighted combination of above 	$\begin{split} & m\ddot{x} = -\underbrace{b\dot{x} \dot{x} }_{\text{damping}} - \underbrace{k_0x - k_1x^3}_{\text{spring}} \\ & b, k_0, k_1 > 0 \end{split}$ $\begin{aligned} & \text{Total energy = kinetic + pot. energy: } V = \frac{mv^2}{2} + \int_0^x F_{spring} ds \Rightarrow \\ & V(x, \dot{x}) = m\dot{x}^2/2 + k_0x^2/2 + k_1x^4/4 > 0, \qquad V(0, 0) = 0 \end{aligned}$ $\begin{aligned} & \frac{d}{dt}V(x, \dot{x}) = \frac{m\ddot{x}\dot{x}}{2} + k_0x\dot{x} + k_1x^3\dot{x} = \{\text{plug in system dynamics}^2\} \\ & = -b \dot{x} ^3 < 0, \text{ for } \dot{x} \neq 0 \end{aligned}$
	What does this mean?
Orten a magnitude measure or (squared) norm like $ e _2,$	Also referred to evaluate along system trajectories .
	Theorem Let $\dot{x} = f(x)$, $f(x^*) = 0$ where x^* is in the interior of
An equilibrium point x^* of $\dot{x} = f(x)$ (i.e., $f(x^*) = 0$) is • locally stable, if for every $R > 0$ there exists $r > 0$, such that	Theorem Let $x = f(x)$, $f(x^*) = 0$ where x^* is in the interior of $\Omega \subset \mathbb{R}^n$. Assume that $V : \Omega \to \mathbb{R}$ is a \mathcal{C}^1 function. If (1) $V(x^*) = 0$ (2) $V(x) > 0$, for all $x \in \Omega$, $x \neq x^*$ (3) $\dot{V}(x) \leq 0$ along all trajectories of the system in Ω
$ x(0) - x^* < r \implies x(t) - x^* < R, t \ge 0$	then x^* is locally stable.
locally asymptotically stable, if locally stable and	If also
$ x(0) - x^* < r \Rightarrow \lim_{t \to \infty} x(t) = x^*$	(4) $\dot{V}(x) < 0$ for all $x \in \Omega$, $x \neq x^*$
globally asymptotically stable, if asymptotically stable for	then x^* is locally asymptotically stable.
all $x(0) \in \mathbb{R}^n$.	Furthermore, if $\Omega = \mathbb{R}^n$ and also
	(5) $V(x) \to \infty$ as $ x \to \infty$
	then x^* is globally asymptotically stable.

Lyapunov Functions (~ Energy Functions)

Conservation and Dissipation

Example cont'd
$$A^TP + PA = -I$$
 $\begin{bmatrix} -1 & 0 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} p_1 & p_2 \\ p_1 & p_2 \\ p_1 & p_1 \\ p_2 & p_1 & p_1 \\ p_1 & p_2 \\ p_1 & p_2 \\ p_1 & p_2 \\ p_1 & p_2 \\ p_2 & p_2 & -1 \\ p_1 & p_2 \\ p_2 & p_2 & -1 \\ p_2 & p_2 \\ p_1 & p_2 \\ p_1 & p_2 \\ p_1 & p_2 \\ p_2 & p_2 \\ p_1 & p_2 \\ p_2 & p_2 \\ p_2 & p_2 \\ p_1 & p_2 \\ p_2 & p_2 \\ p_2 & p_2 \\ p_1 & p_2 \\ p_2 & p_2 \\ p_2 & p_2 \\ p_1 & p_2 \\ p_2 & p_2 \\ p_2 & p_2 \\ p_1 & p_2 \\ p_2 & p_2 \\ p_2 & p_2 \\ p_1 & p_2 \\ p_2 & p_2 \\ p_2 & p_2 \\ p_1 & p_2 \\ p_2 & p_2 \\ p_2 & p_2 \\ p_1 & p_2 \\ p_2 & p_2 \\ p_2 & p_2 \\ p_1 & p_2 \\ p_2 & p_2 \\ p_2 & p_2 \\ p_1 & p_2 \\ p_2 & p_2 \\ p_2$

Phase plot showing that
$$V = \frac{1}{2}(x_1^2 + x_2^2) = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \text{ does NOT work.}$$

v Stability for Linear Systems

=Ax

Let $Q = Q^T > 0$. Solve

$$PA + A^T P = -Q$$

symmetric matrix P.

 $V(x) = x^T P x \text{,} \Rightarrow$

$$\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = x^T (PA + A^T P) x = -x^T Q x < 0$$

lity: If $P = P^T > 0$, then the Lyapunov implies (local=global) asymptotic stability, ies of A must satisfy $\operatorname{Re} \lambda_k(A) < 0, \ \forall k$

Interpretation

(0) = z. Then

$$\int_0^\infty x^T(t)Qx(t)dt = z^T\left(\int_0^\infty e^{A^Tt}Qe^{At}dt\right)z = z^TPz$$

is the cost-to-go from z (with no input) and cost function with weighting matrix Q.

n Lyapunov's Linearization Method

. Then, V(0) = 0, $V(x) > 0 \ \forall x \neq 0$, and

$$\begin{split} \dot{Y}(x) &= x^T P f(x) + f^T(x) P x \\ &= x^T P [Ax + g(x)] + [x^T A^T + g^T(x)] P x \\ &= x^T (PA + A^T P) x + 2x^T P g(x) = -x^T Q x + 2x^T P g(x) \end{split}$$

 $x^T Q x \ge \lambda_{\min}(Q) \|x\|^2$ a_{i} and $a_{i} > 0$ such that

For all
$$\gamma > 0$$
 there exists $r > 0$ such that

$$||g(x)|| < \gamma ||x||, \qquad \forall ||x|| < r$$

ufficiently small gives

$$\dot{V}(x) \le -\left(\lambda_{\min}(Q) - 2\gamma\lambda_{\max}(P)\right) \|x\|^2 < 0$$

Lyapunov Theorem for Global Asymptotic Stability

Radial Unboundedness is Necessary

If the condition $V(x)\to\infty$ as $\|x\|\to\infty$ is not fulfilled, then global stability cannot be guaranteed.

Example Assume $V(x)=x_1^2/(1+x_1^2)+x_2^2$ is a Lyapunov function for a system. Can have $\|x\|\to\infty$ even if V(x)<0.

Example [Khalil]:

$$\dot{x}_1 = \frac{-6x_1}{(1+x_1^2)^2} + 2x_2$$

$$\dot{x}_2 = \frac{-2(x_1+x_2)}{(1+x_1^2)^2}$$

Proof Idea

Assume $x(t) \neq 0$ (otherwise we have $x(\tau) = 0$ for all $\tau > t$). Then

$$\frac{V(x)}{V(x)} \le -c$$

Integrating from $0 \mbox{ to } t \mbox{ gives}$

$$\log V(x(t)) - \log V(x(0)) \le -\alpha t \implies V(x(t)) \le e^{-\alpha t} V(x(0))$$

Hence, $V(x(t)) \to 0$, $t \to \infty$. Using the properties of V it follows that $x(t) \to 0$, $t \to \infty$.

LaSalle's Invariant Set Theorem

Theorem Let $\Omega \subseteq \mathbb{R}^n$ compact invariant set for $\dot{x} = f(x)$. Let $V : \Omega \to \mathbb{R}$ be a C^1 function such that $\dot{V}(x) \leq 0$, $\forall x \in \Omega$, $E := \{x \in \Omega : \dot{V}(x) = 0\}$, M :=largest invariant subset of $E \implies \forall x(0) \in \Omega$, x(t) approaches M as $t \to +\infty$

Note that V must **not** be a positive definite function in this case.

A Motivating Example (cont'd)

$$\begin{split} m\ddot{x} &= -b\dot{x}|\dot{x}| - k_0 x - k_1 x^3\\ V(x) &= (2m\dot{x}^2 + 2k_0 x^2 + k_1 x^4)/4 > 0, \qquad V(0,0) = 0\\ \dot{V}(x) &= -b|\dot{x}|^3 \end{split}$$

Assume that there is a trajectory with $\dot{x}(t)=0\text{, }x(t)\neq0.$ Then

$$\frac{d}{dt}\dot{x}(t) = -\frac{k_0}{m}x(t) - \frac{k_1}{m}x^3(t) \neq 0,$$

which means that $\dot{\boldsymbol{x}}(t)$ can not stay constant.

Hence, $\dot{V}(x)=0 \iff x(t)\equiv 0$, and LaSalle's theorem gives global asymptotic stability.

Theorem Let $\dot{x} = f(x)$ and $f(x^*) = 0$. If there exists a \mathcal{C}^1 function $V : \mathbb{R}^n \to \mathbb{R}$ such that

(1) $V(x^*) = 0$ (2) V(x) > 0, for all $x \neq x^*$ (3) $\dot{V}(x) < 0$ for all $x \neq x^*$ (4) $V(x) \to \infty$ as $||x|| \to \infty$

then x^* is a globally asymptotically stable equilibrium.

Somewhat Stronger Assumptions

Theorem: Let $\dot{x} = f(x)$ and $f(x^*) = 0$. If there exists a \mathcal{C}^1 function $V: \mathbb{R}^n \to \mathbb{R}$ such that

(1) $V(x^*) = 0$

- (2) V(x) > 0 for all $x \neq x^*$
- (3) $\dot{V}(x) \leq -\alpha V(x)$ for all x
- (4) $V(x) \to \infty$ as $||x|| \to \infty$

then x^* is globally **exponentially** stable.

Invariant Sets

Definition: A set M is called **invariant** if for the system

$$\dot{x} = f(x),$$

 $x(0)\in M \text{ implies that } x(t)\in M \text{ for all } t\geq 0.$

Special Case: Global Stability of Equilibrium

Theorem: Let $\dot{x}=f(x)$ and f(0)=0. If there exists a \mathcal{C}^1 function $V:\mathbb{R}^n\to\mathbb{R}$ such that

- (1) V(0) = 0, V(x) > 0 for all $x \neq 0$
- (2) $\dot{V}(x) \leq 0$ for all x
- (3) $V(x) \to \infty$ as $||x|| \to \infty$
- (4) The only solution of $\dot{x} = f(x)$, $\dot{V}(x) = 0$ is $x(t) = 0 \ \forall t$

 \implies x = 0 is globally asymptotically stable.

Example—Stable Limit Cycle

Show that $M = \{x : ||x|| = 1\}$ is a asymptotically stable limit cycle for (almost globally, except for starting at x=0):

$$\dot{x}_1 = x_1 - x_2 - x_1(x_1^2 + x_2^2)$$
$$\dot{x}_2 = x_1 + x_2 - x_2(x_1^2 + x_2^2)$$

Let $V(x) = (x_1^2 + x_2^2 - 1)^2$.

$$\begin{split} \frac{dV}{dt} &= 2(x_1^2+x_2^2-1)\frac{d}{dt}(x_1^2+x_2^2-1)\\ &= -2(x_1^2+x_2^2-1)^2(x_1^2+x_2^2) \leq 0 \quad \text{for } x \in \Omega \end{split}$$

 $\Omega = \{0 < \|x\| \le R\} \text{ is invariant for } R = 1.$

A Motivating Example (revisited)

$$\begin{split} & m\ddot{x}=-b\dot{x}|\dot{x}|-k_0x-k_1x^3\\ & V(x,\dot{x})=(2m\dot{x}^2+2k_0x^2+k_1x^4)/4>0, \qquad V(0,0)=0\\ & \dot{V}(x,\dot{x})=-b|\dot{x}|^3 \text{ gives } E=\{(x,\dot{x}):\,\dot{x}=0\}. \end{split}$$

Assume there exists $(\bar{x}, \dot{\bar{x}}) \in M$ such that $\bar{x}(t_0) \neq 0$. Then

$$m\ddot{\bar{x}}(t_0) = -k_0\bar{x}(t_0) - k_1\bar{x}^3(t_0) \neq 0$$

so $\dot{x}(t_0+)\neq 0$ so the trajectory will immediately leave M. A contradiction to that M is invariant.

Hence, $M = \{(0,0)\}$ so the origin is asymptotically stable.

Let us try the Lyapunov function

$$\begin{split} V &= \frac{1}{2} (\widetilde{x}^2 + \gamma_a \widetilde{a}^2 + \gamma_b \widetilde{b}^2) \\ \dot{V} &= \widetilde{x} \dot{\widetilde{x}} + \gamma_a \widetilde{a} \dot{\widetilde{a}} + \gamma_b \widetilde{b} \dot{\widetilde{b}} = \\ &= \widetilde{x} (-a \widetilde{x} - \widetilde{a} \widehat{x} + \widetilde{b} u) + \gamma_a \widetilde{a} \dot{\widetilde{a}} + \gamma_b \widetilde{b} \dot{\widetilde{b}} = -a \widetilde{x}^2 \end{split}$$

where the last equality follows if we choose

$$\dot{\widetilde{a}}=-\dot{\widehat{a}}=\frac{1}{\gamma_a}\widetilde{x}\widehat{x}\qquad \dot{\widetilde{b}}=-\dot{\widehat{b}}=-\frac{1}{\gamma_b}\widetilde{x}u$$

Invariant set: $\tilde{x} = 0$.

This proves that $\tilde{x} \to 0$.

(The parameters \widetilde{a} and \widetilde{b} do not necessarily converge: $u\equiv 0.)$ [Demonstration if time permits]

Results

Estimation of parameters starts at t=10 s.

Example—Stable Limit Cycle

$$E = \{x \in \Omega : \dot{V}(x) = 0\} = \{x : ||x|| = 1\}$$

 ${\cal M}={\cal E}$ is an invariant set, because

$$\frac{d}{dt}V = -2(x_1^2 + x_2^2 - 1)(x_1^2 + x_2^2) = 0 \quad \text{for } x \in M$$

We have shown that M is a asymtotically stable limit cycle (globally stable in $R - \{0\}$)

Adaptive Noise Cancellation by Lyapunov Design

 $\dot{x} + ax = bu$ $\dot{\hat{x}} + \hat{a}\hat{x} = \hat{b}u$

 $\text{Introduce } \widetilde{x} = x - \widehat{x}, \ \ \widetilde{a} = a - \widehat{a}, \ \ \widetilde{b} = b - \widehat{b}.$

Want to design adaptation law so that $\widetilde{x} \to 0$

Results

timation of parameters starts at t=10 s

Next Lecture

Stability analysis using input-output (frequency) methods