
Lecture 12: Dynamic Programming

December 7, 2015

Dynamic programming

I Closed loop formulation of optimal control

I Intuitive methods of solution

I Guarantees global optimality

I Iteratively solves the problem starting at the end-time

’Life can only be understood backwards;
but it must be lived forwards’

Kierkegaard

Example: Shortest path

As an example we try to find the shortest path from “A” to “H” in
the above graph.

Example: Shortest path

We proceed with backward induction. Once the final node is
reached the remaining cost is 0.

Example: Shortest path

Knowing the cost at “H” to be 0, costs of getting from “E”, “F”
and “G” to “H” are easily computed.

Example: Shortest path

Now the optimal “cost-to-go” at “E”, “F” and “G” can be used to
get the optimal “cost-to-go” at “B”, “C” and “D”.

Example: Shortest path

In the next step we arrive at the origin.

Example: Shortest path

The procedure also gives us the optimal path.

Basic problem formulation: The system

I First we assume that the system is in discrete time

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1

where xk is the state uk ∈ U(xk) is the control.

I Feedback-control implies uk = µk(xk)

I In closed-loop form the system can thus be written

xk+1 = fk(xk, µk(xk))

Basic problem formulation: The cost

I We let µ = {µ0, µ1, . . . , µN−1} and assume that we have an
additive cost

Jµ(x0) = gN (xN) +

N−1∑
k=0

gk(xk, µk(xk))

I Total cost Jµ(x0) is a function of both initial state x0 and
feedback law µ

I N is the horizon of the problem
I Finite-horizon: N <∞
I Infinite-horizon: N =∞, gN ≡ 0

Basic formulation: Minimal cost and optimal strategy

I An optimal policy µ∗ is one that minimizes Jµ(x0) (for all x0)

Jµ∗(x0) = min
µ∈Π

Jµ(x0)

optimization is performed over the set, Π, of admissible
control policies

I For deterministic problems a control is admissible whenever
I uk = µk(xk) ∈ U(xk)

The principle of optimality

Let µ∗ = {µ∗0, µ∗1, . . . , µ∗N−1} be an optimal policy for the basic
problem and assume that when applying µ∗, a given state xi
occurs at time i, when starting at x0.
Consider the subproblem whereby we are in state xi at time i and
wish to minimize the “cost-to-go” from time i to time N

gN (xN) +
N−1∑
k=i

gk(xk, µk(xk)).

Principle of optimality

The truncated policy {µ∗i , µ∗i+1, . . . , µ
∗
N−1} is optimal for this

subproblem.

Principle of optimality

I Google maps fastest
route from LTH to
KTH passes through
Jönköping

I Subpath starting in
Jönköping is the
fastest route from
Jönköping to KTH

The dynamic programming algorithm
Let

Vk(xk) = gN (xN) +

N−1∑
j=k

gj(xj , µ
∗
j (xj))

so that Vk(xk) is the optimal “cost-to-go” from time k to time N

The Bellman equation

For every initial state x0, the optimal cost J∗(x0) is given by the
last step in the following backward-recursion.

Vk(xk) = min
uk∈Uk(xk)

[gk(xk, uk, wk) + Vk+1(fk(xk, uk))]

VN (xN) = gN (xN)

We get the optimal control “for-free”

µ∗k(xk) = arg min
uk∈Uk(xk)

[gk(xk, uk, wk) + Vk+1(fk(xk, uk))]

Managing spending and saving

Example

An investor holds a capital sum in a building society, which gives
an interest rate of θ × 100% on the sum held at each time
k = 0, 1, . . . , N − 1. The investor can chose to reinvest a portion u
of the interest paid which then itself attracts interest. No amounts
invested can ever be withdrawn. How should the investor act so as
to maximize total reward by time N − 1?

I We take as the state xk the present income at time
k = 0, 1, . . . , N − 1 and let uk ∈ [0, 1] be the fraction of
reinvested interest, hence

xk+1 = xk + θukxk =: f(xk, uk)

I The reward is gk(x, u) = (1− u)x and gN (x, u) ≡ 0.

Managing spending and saving

I The optimality equation is V (N, x) = 0,

V (k, x) = max
0≤u≤1

{(1−u)x+V (k+1, (1+θu)x)}, k = 0, 1, . . . , N−1

I We get

V (N − 1, x) = max
0≤u≤1

{(1− u)x+ 0} = x

V (N − 2, x) = max
0≤u≤1

{(1− u)x+ (1 + θu)x}

= max
0≤u≤1

{2x+ (θ − 1)ux} = max{2, 1 + θ}x = ρ2x

I Guess: V (N − s+ 1, x) = ρs−1x, then

V (N − s, x) = max
0≤u≤1

{(1− u)x+ ρs−1(1 + uθ)x)}

= max{1 + ρs−1, (1 + θ)ρs−1}x = ρsx

Managing spending and saving

I We have thus verified that V (N − s, x) = ρsx, and found the
recursion

ρs = ρs−1 + max{1, θρs−1}

I Together with ρ1 = 1 this gives

ρs =

{
s for s ≤ s∗
s∗(1 + θ)s−s

∗
otherwise.

s∗ = d1/θe

I The optimal policy is then

uk =

{
1 for k < N − s∗
0 for k ≥ N − s∗.

Continuous time optimal control: The HJB-equation

I So far we have only considered the discrete time case

I Dynamic programming can also be applied in continuous time,
this leads to the Hamilton-Jacobi-Bellman (HJB) equation:

I Benefits over PMP:

+ Gives closed-loop optimal control in continuous time
+ Sufficient condition of optimality

I Drawbacks:

– Requires solving a highly non-linear PDE
– Well-posedness of the PDE problem proved only in the ’80s

Continuous time problem formulation

I In continuous time the system is given by

ẋ(t) = f(x(t), u(t)), t ∈ [0, T]

with x(0) = x0 and u(t) ∈ U(x(t)), for all t ∈ [0, T].

I We define the cost as

J(x0) = φ(x(T)) +

∫ T

0
L(x(t), u(t))dt

I With optimal “cost-to-go” from (t,x)

V (t, x) = min
u

{
φ(x(T)) +

∫ T

t
L(x(t), u(t))dt

}

The HJB-equation: Informal derivation

I divide [0, T] into N subintervals of length δ = T/N

I Let xk = x(kδ) and uk = u(kδ), for k = 0, 1, . . . , N and
approximate the system by

xk+1 = xk + f(xk, uk)δ, k = 0, 1, . . . , N.

I The optimal “cost-to-go” is approximated by

V (kδ, x) = min
u0,...,uN−1

[φ(xN) +

N−1∑
k=0

L(xk, uk)δ]

The HJB-equation: Informal derivation

I Dynamic programming now yields

V (kδ, x) = min
u∈U

[L(x, u)δ + V ((k + 1)δ, x+ f(x, u)δ)],

V (Nδ, x) = φ(x).

I For small δ we get (with t = kδ)

V (t+ δ, x+ f(x, u)δ) ≈ V (t, x) + Vt(t, x)δ +∇xV (t, x) · f(x, u)δ

I Inserting this in the DP equation gives

V (t, x) ≈min
u∈U

[L(x, u)δ + V (t, x)

+ Vt(t, x)δ +∇xV (t, x) · f(x, u)δ]

The HJB-equation

The Hamilton-Jacobi-Bellman equation

For every initial state x0, the optimal cost is given by
J∗(x0) = V (0, x0) where V (t, x) is the solution to the PDE

Vt(t, x) = −min
u∈U

[L(x, u) +∇xV (t, x) · f(x, u)]

V (T, x) = φ(x)

As before the optimal control is given in feedback form by

µ∗(t, x) = arg min
u∈U

[L(x, u) +∇xV (t, x) · f(x, u)]

Example: The HJB-equation

Example

Consider the simple example involving the scalar system

ẋ(t) = u(t),

with the constraint |u(t)| ≤ 1 for all t ∈ [0, T] and the cost

J(x0) =
1

2
(x(T))2.

I The HJB equation for this problem is

Vt(t, x) = − min
|u(t)|≤1

[Vx(t, x)u]

with terminal condition V (T, x) = x2/2.

Example: The HJB-equation

I An optimal control for this problem is

µ(t, x) =

1 for x < 0
0 for x = 0
−1 for x > 0

I The optimal “cost-to-go” with this control is

V (t, x) =
1

2
(max{0, |x| − (T − t)})2

Example: The HJB-equation

I For |x| > T − t we have V (t, x) = 1/2(|x| − (T − t))2, hence

Vt = |x| − (T − t)
min
|u(t)|≤1

[Vx(t, x)u] = −sgn(x)Vx(t, x) = −sgn(x)2(|x| − (T − t))

= −(|x| − (T − t))

I For |x| ≤ T − t we have V (t, x) = 0 and the HJB equation
holds trivially

Infinite horizon problem

Assume that the final cost is φ(x(T)) = 0 and the final time
T → +∞, and that there exists some control such that the total
cost remains bounded in the limit. Hence, we want to solve

min
u

∫ +∞

0
L(x(t), u(t))dt , x(0) = x0

It is intuitive that the cost-to-go from (x, t)

V (x, t) = min
u

∫ T

t
L(x(t), u(t))dt = V (x)

does not depend on the initial time but only on the initial state.
The HJB equation then becomes

0 = min
u

{
L(x, u) +

∂V

∂x
(x) · f(x, u)

}
Observe that, for scalar problems, this is an ODE!

Infinite horizon problem: example

min
u

∫ +∞

0
(x4(t) + u4(t))dt , x(0) = x0

From the stationary HJB eqn we get

0 = min
u

{
x4 + u4 + Vx(x) · u

}
and putting the derivative with respect to u equal to 0

x4 = 3

(
1

4
Vx(x)

)4/3

which gives Vx(x) = ±4(1
3)3/4x3 and the + sign should be chosen

to have V positive definite)since L is. This gives the optimal
feedback control law

u∗(x) = −(
1

4
Vx(x))1/3 = −(

1

3
)1/4x

Dynamics Programming for LTI systems, quadratic costs

Consider the optimal feedback control problem for an LTI system
ẋ = Ax+Bu with cost

J =

∫ T

0

(
x′(t)Qx(t) + u′(t)Ru(t)

)
dt+ x(T)′Mx(T)

where Q,R,M are symmetric positive definite. The HJB eqn reads

0 = min
u

{
x′Qx+ u′Ru+ Vt + V ′x(Ax+Bu)

}
with final time condition V (T, x) = x′Mx.

Dynamics Programming for LTI systems, quadratic costs

With the ansatz V (x, t) = x′P (t)x with symmetric P (t), we get
that the optimal control is in the form

u∗ = −R−1B′Px

and P = P (t) satisfies the following differential eqn

Ṗ = −PA−A′P −Q+ PBR−1B′P P (T) = M

which is called the differential Riccati equation (DRE).
For the infinite horizon problem this reduces to

0 = −PA−A′P −Q+ PBR−1B′P

which is called the algebraic Riccati equation (ARE).

Bonus: Dynamic programming and randomness

I So far we have only considered deterministic systems
I For deterministic systems open-loop and closed-loop control

coincide
I Minimizing over admissible policies µ = {µ0 . . . , µN−1}

equivalent to minimizing over control vectors {u0, . . . , uN−1}
I Given µ, future states are perfectly predictable through

xk+1 = fk(xk, µk(xk)), k = 0, 1, . . . , N − 1

I Corresponding controls perfectly predictable through

uk = µk(xk)

I When introducing randomness in the state evolution, closing
the loop becomes important

Problem formulation with randomness: The system

I We assume that the system is in discrete time but add
randomness

xk+1 = fk(xk, uk, wk)

where xk is the state uk ∈ U(xk) is the control and wk is a
noise term.

I The distribution of the noise term wk only depends on the
past through xk and uk

I In closed-loop form the system can thus be written

xk+1 = fk(xk, µk(xk), wk)

Basic problem formulation: The cost

I In the random case we get the cost

Jµ(x0) = E

[
gN (xN) +

N−1∑
k=0

gk(xk, µk(xk), wk)

]

where expectation is taken over the random variables xk and
wk

I Expected cost Jµ(x0) is a function of both initial state x0 and
feedback law µ

Basic formulation: Minimal cost and optimal strategy

I An optimal policy µ∗ is a policy that minimizes Jµ(x0) (for
every x0)

Jµ∗(x0) = min
µ∈Π

Jµ(x0)

I Optimization is performed over the set, Π, of admissible
controls

I uk ∈ U(xk), for all xk
I uk does not depend on future events

I Optimal control is in feedback-form u∗k = µ∗k(x
∗
k)

Basic formulation: Minimal cost and optimal strategy

I An optimal policy µ∗ is a policy that minimizes Jµ(x0) (for
every x0)

Jµ∗(x0) = min
µ∈Π

Jµ(x0)

I Optimization is performed over the set, Π, of admissible
controls

I uk ∈ U(xk), for all xk
I uk does not depend on future events

I Optimal control is in feedback-form u∗k = µ∗k(x
∗
k)

The value of information

Two chess players play a two round chess match. Winning one
round gives 1 point, drawing gives 1/2 and losing gives 0. If the
score after the two rounds is tied the match will be decided by
sudden death.
Player 1 has the opportunity of adapting his strategy by selecting
to play either timid or bold,

I Timid: Draws with probability pd and loses with probability
1− pd (no chance of winning)

I Bold: Wins with probability pw and loses with probability
1− pw (no chance of drawing)

Two round chess match
Player 1 is thus faced with the problem of finding the strategy that
maximizes his probability of winning the match.

Open-loop strategy
With an open-loop strategy Player 1 has to decide beforehand how
to play in each round.

1. Timid-timid: Probability p2
dpw of winning the match

2. Bold-bold: Probability p2
w + 2p2

w(1− pw) = p2
w(3− 2pw) of

winning the match

3. Timid-bold: Probability pdpw + (1− pd)p2
w of winning the

match

4. Bold-timid: Probability pwpd + p2
w(1− pd) of winning the

match

Open-loop probability of win = max(p2
w(3− 2pw), pwpd + p2

w(1− pd))
= p2

w + pw(1− pw) max(2pw, pd)

Optimal open loop strategy:

I pd > 2pw: Timid-bold or bold-timid

I pd < 2pw: Bold-bold

I pd = 2pw: All except timid-timid are optimal

Closed-loop strategy

Here we start with a bold strategy in the first round and choose

1. Bold-timid: If score is 1-0 after Round 1

2. Bold-bold: If score is 0-1 after Round 1

Closed-loop probability of win = pwpd + p2
w(1− pd) + (1− pw)p2

w

= p2
w + pw(1− pw)(pw + pd)

Comparing with the open-loop case gives

Value of information =p2
w + pw(1− pw)(pw + pd)

− p2
w − pw(1− pw) max(2pw, pd)

=pw(1− pw) min(pw, pd − pw)

The dynamic programming algorithm
Now,

Vk(xk) = E

gN (xN) +

N−1∑
j=k

gj(xj , µ
∗
j (xj), wj)

The Bellman equation

For every initial state x0, the optimal cost J∗(x0) is given by the
last step in the following backward-recursion.

Vk(xk) = min
uk∈Uk(xk)

E [gk(xk, uk, wk) + Vk+1(fk(xk, uk, wk))]

VN (xN) = gN (xN)

We get the optimal control “for-free”

µ∗k(xk) = arg min
uk∈Uk(xk)

E [gk(xk, uk, wk) + Vk+1(fk(xk, uk, wk))]

Example: Selling an asset

Optimal asset selling

Consider a person having an asset that has to sell within N time
periods. Every time period he gets a new offer, that he can either
accept or reject. These offers are given by a sequence of
independent random variables w0, w1, . . . , wN−1. When the seller
accepts an offer he can invest the money at fixed interest rate
r > 0. The sellers objective is to maximize the revenue at day N .

I We let uk = 0 represent rejecting to kth offer and uk = 1
when accepting offer k

I We also introduce the terminal state T that xk enters once
the asset is sold and get the state equation xk+1 = f(xk, wk),
where

f(xk, wk) =

{
T if xk = T (sold), or if xk 6= T and uk = 1 (sell),
wk otherwise.

Example: Selling an asset

I The corresponding reward function may be written as

E

[
gN (xN) +

N−1∑
k=i

gk(xk, uk, wk)

]

where

gN (xN) =

{
xN if xN 6= T
0 if xN = T.

and

gk(xk, uk, wk) =

{
(1 + r)N−kxk if xk 6= T and uk = 1 (sell),
0 otherwise.

Example: Selling an asset

I This gives the DP algorithm

VN (xN) =

{
xN if xN 6= T
0 if xN = T

and

Vk(xk) =

{
max{(1 + r)N−kxk, E[Vk+1(wk)]} xk 6= T
0 xk = T.

I We thus get the policy

uk =

{
1 if xk > αk
0 if xk < αk,

where

αk =
E[Vk+1(wk)]

(1 + r)N−k

Example: Selling an asset

I Let us now assume that the wk are identically distributed

I Introduce the functions Gk(xk) = (1 + r)k−NVk(xk), hence
for xN , xk 6= T

GN (xN) = xN

Gk(xk) = max{xk, (1 + r)−1E[Gk+1(w)]}

and

αk =
E[Gk+1(w)]

1 + r

I Now GN−1(x) ≥ GN (x) and if Gj+1(x) ≥ Gj+2(x) then
Gj(x) ≥ Gj+1(x), hence by induction Gk(x) ≥ Gk+1(x) for
k = 0, . . . , N − 1

I This shows that αk is a decreasing sequence

Example: Selling an asset

I To compute the sequence αk we note that
Gk(xk) = max{xk, αk}, hence

αk =
1

1 + r
E[Gk+1(w)]

=
1

1 + r
αk+1P [w ≤ αk+1] +

1

1 + r

∫ ∞
αk+1

xfw(x)dx

I Since by definition αN = 0 this gives a recursion for αk,
k = 1, . . . , N

Example: Selling an asset

I Assume that w is Exp(1) distributed i.e. fw(x) = e−x

I We have P [w ≤ αk+1] = 1− e−αk+1 and∫ ∞
αk+1

xfw(x)dx = e−αk+1(αk+1 + 1)

I This gives the recursion

αk =
1

1 + r
αk+1(1− e−αk+1) +

1

1 + r
e−αk+1(αk+1 + 1)

=
1

1 + r
(αk+1 + e−αk+1)

Example: Selling an asset

The figure shows the optimal policy for r = 0.01 and N = 20.

Optimal stopping

I Optimal stopping problems are a special case of the basic
problem in which the control can only take two values e.g.
{0, 1} one of which renders the cost (reward) φk(x) and
makes the system enter an absorbing terminal state T after
which no further cost is incurred

I The Dynamic programming algorithm for optimal stopping
problems can be written

VN (xN) = φN (xN)

Vk(xk) = min{φk(xk), E [Vk+1(f(xk, wk))]}

I For optimal stopping problems we can define a set
Tk = {x : φk(x) < E [Vk+1(f(xk, wk))]} called the
termination set

Optimal stopping: The one-stage look-ahead rule

I Sometimes extracting the optimal policy by backward
iteration in the DP algorithm is complex

I For a specific type of problems we do not need to solve the
DP however

I Define the set S = {(k, x) : φk(x) < E [φk+1(f(xk, wk))]}
I If (k, xk) ∈ S it is better to stop now than to continue and

stop in the next step

I Assume that the set S is absorbing in the sense that
(k + 1, f(xk, wk)) ∈ S whenever (k, xk) ∈ S

I Then it is optimal to stop iff (k, xk) ∈ S.

