Lecture 11 — Optimal Control

v

The Maximum Principle Revisited

v

Examples

v

Numerical methods/Optimica

v

Examples, Lab 3

Material

> Lecture slides,
including material by J. kesson, Automatic Control LTH

» Glad & Ljung, part of Chapter 18



Goal

To be able to
> solve simple problems using the maximum principle

» formulate advanced problems for numerical solution
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Problem Formulation (1)

Standard form (1):

Trajectory cost Final cost

tf ——— —N—

Minimize / L(x(t),u(t)) dt + ¢(x(ts))
0

&(t) = f(z(t), u(t))
u(t) e U, 0<t<ty, tr given
{L‘(O) =X

z(t) € R™, u(t) € R™
U control constraints

Here we have a fixed end-time .



The Maximum Principle (18.2)

Introduce the Hamiltonian
H(x,u,\) = L(z,u) + N (t) f(z,u).
If problem (1) has a solution {u*(t),z*(t)}, then

min H (" (), w, () = H(" (0,0 (A1), 0<t<ty,

where A(t) solves the adjoint equation

dA()/dt = —HT (" (), (), A1), with  Aty) = 6L (" (t))



Remarks

The Maximum Principle gives necessary conditions

A pair (u*(-),z*(+)) is called extremal if the conditions of the
Maximum Principle are satisfied. Many extremals can exist.
The maximum principle gives all possible candidates.

However, there might not exist a minimum!

Example

Minimize x(1) when &(t) = u(t), (0) = 0 and u(t) is free



Goddard’s Rocket Problem revisited

How to send a rocket as high up in the air as possible?

(v(0), ~(0),m(0)) = (0,0,m0), g, >0

u motor force, D = D(v, h) air resistance
Constraints: 0 < u < Upqe and m(ty) = my (empty)
Optimization criterion: max,, h(ts)



Problem Formulation (2)

min / " L(@(t), u(t)) dt + d(a(ts)

t;>0
w[0,tf]=U
@(t) = f(x(t), u(t), x(0)=wo
P(x(ty)) =0

Note the differences compared to standard form:
» End constraints ¢ (z(tf)) =0
> ts free variable (i.e., not specified a priori)



The Maximum Principle-General Case (18.4)

Introduce the Hamiltonian
H(z,u, \,no) = noL(x,u) + AT (t) f (2, u)

If problem (2) has a solution w*(t), z*(t), then there is a vector
function A(t), a number ng > 0, and a vector p € R" such that

[0 p']# 0 and

min H (" (£),u, M), o) = H(@" (6),w" (), A(#),no). 0 <t <y,

where

A(t) = —H (a*(t), u* (1), A(t), no)

Atg) = nody (x*(tg)) + V3 (" (tp)n

If the end time ¢4 is free, then H(z*(ts),u*(ts), A(tf),no) = 0.



Normal /abnormal cases

Can scale ng, i1, A(t) by the same constant
Can reduce to two cases

» ng =1 (normal)

» ng = 0 (abnormal, since L and ¢ don't matter)
As we saw before (18.2): fixed time ¢ and no end constraints =
normal case



Hamilton function is constant

H is constant along extremals (z*,u*)
Proof (in the case when u*(t) € Int(U)):
d

EH:sz:+HA5\+Huu:Hmf—fTHf+0:0



Feedback or feed-forward?

Example:

do _

at

minimize J = / (m2 + u2) dt
0

u, z(0) =1

Jmin = 1 is achieved for
u(t) = —e* open loop
or
u(t) = —z(t) closed loop

(?7?) = stable system
(??) = asympt. stable system
Sensitivity for noise and disturbances differ!!



Reference generation using optimal control

Note that the optimization problem makes no distinction between
open loop control u*(t) and closed loop control u*(t,x). Feedback
is needed to take care of disturbances and model errors.

Idea: Use the optimal open loop solution u*(t),z*(t) as reference
values to a linear regulator that keeps the system close to the
desired trajectory

Efficient for large setpoint changes.

Planned trajectory z*



Recall Linear Quadratic Control

Qll
t T
wininize o7 (t) Qe+ [ 0] | G N[0
Q22

where
t=Ax+ Bu, y=C«z

Optimal solution if ty =00, @n =0, all matrices constant, and x
measurable:

u=—Lx

where L = Q5 (Q12 + BT'S) and S = ST > 0 solves

SA+ ATS + Qi1 — (Qi2 + SB)Q5 (Quz + BTS) =0



Second Variations

Approximating J(x,u) around (z*,u*) to second order

ty T
#5 = gitomined [0 ][ e | [ |a
to

2 5u Hux Huu 5u

where J = J* 4+ §%2J + ... is a Taylor expansion of the criterion
and 6, = x — 2" and 6, = u — u*.

Treat this as a new optimization problem. Linear time-varying
system and quadratic criterion. Gives optimal controller

u—u*=L(t)(z —x¥)



Opt. Ref. Gen.

Take care of deviations with linear controller

Lin. Cont.

IS

Obs.

Proc.
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Example: Optimal heating

ty=1
Minimize / P(t)dt
0

when T =P-T
T(0)=0 T(1)=1

T temperature
P heat effect



Solution

Hamiltonian
H =ngP + AP — \T

Adjoint equation

= At) = pe™!

= H=(ng+pe' )P - AT
(®)
o(t

At optimality



Solution

=0 = (ng,u) =(0,0) = Not allowed!
1 # 0 = Constant P or just one switch!
T'(t) approaches one from below, so P # 0 near t = 1. Hence

* _ 07 0 S t S tl
P(t)_{PmaX7 tl<t§1
T( ) 0<t<ty
ftl O P dr = (e7D —e-t)) Pt <t <1
Time t; is given by T'(1) = (1 — e_(l_tl)) Prax =1

Has solution 0 < t; <1 if Ppax >

— el



Example — The Milk Race

Move milk in minimum time without spilling!
[M. Grundelius — Methods for Control of Liquid Slosh]

[movie]



Minimal Time Problem

‘NOTE! Common trick to rewrite criterion into “standard form"!! ‘

ly
minimize ¢y = minimize / 1dt
0
Control constraints

No spilling
|Ca(t)] < h

Optimal controller has been found for the milk race

Minimal time problem for linear system & = Ax + Bu, y = Cx
with control constraints |u;(t)| < u["**. Often bang-bang control
as solution



Results- milk race

Maximum slosh ¢4 = 0.63
Maximum acceleration = 10 m/s?
Time optimal acceleration profile

Acceleration

] 0.05 0.1 0.15 0.2 025 03 035 04
Slosh
1,
05F
0
—0sl
-1
0 0.05 0.1 0.15 0.2 025 03 035 04

Optimal time = 375 ms, industrial = 540ms
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Numerical Methods for Dynamic Optimization

» Many algorithms
» Applicability highly model-dependent
(ODE, DAE, PDE, hybrid?)
Calculus of variations
Single/Multiple Shooting
Simultaneous methods
Simulation-based methods

v

vwvyy

» Analogy with different simulation algorithms
(but larger diversity)
» Heavy programming burden to use numerical algorithms
» Fortran
» C

» Engineering need for high-level descriptions



Modelica — A Modeling Language

» Modelica is increasingly used in industry

» Expert knowledge
» Capital investments

» Usage so far
» Simulation (mainly)

» Other usages emerge

» Sensitivity analysis
Optimization
Model reduction
System identification
Control design

vV vy vy



Optimica and JModelica — A Research Project

Shift focus:

» from encoding
» to problem formulation

v

v

Enable dynamic optimization of Modelica models
» State of the art numerical algorithms

v

Develop a high level description for optimization problems
» Extension of the Modelica language

v

Develop prototype tools

» JModelica and The Optimica Compiler
» Code generation
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Optimica—An Example

Ly
min / 1dt
u(t) Jo

subject to the dynamic constraint

i(t) =v(t), z(0)
o(t) = u(t), v(0)
and
x(ty) =
v(ty) =



A Modelica Model for a Double Integrator

A double integrator model

model DoubleIntegrator
Real x(start=0);
Real v(start=0);
input Real u;
equation
der(x)=v;
der(v)=u;
end DoublelIntegrator;



The Optimica Description

Minimum time optimization problem

optimization DIMinTime (objective=cost(finalTime),
startTime=0,
finalTime(free=true,initialGu
Real cost;
DoubleIntegrator di(u(free=true,initialGuess=0.0));
equation
der (cost) = 1;
constraint
finalTime>=0.5;
finalTime<=10;
di.x(finalTime)=1;
di.v(finalTime)=0;
di.v<=0.5;
di.u>=-1; di.u<=1;
end DIMinTime;



Optimal Double Integrator Profiles
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Optimal Start-up of a Plate Reactor

l Reactant B l
Reactant A qB1 Reactor outlet
Ty
— HEX o © © © o
T, T
HEX

! Cooling water
» Achieve safe start-up T, < Tz
» Maximize the conversion

» Minimize the start-up time



The Optimization Problem

Reduce sensitivity of the nominal start-up trajectory by:

- Introducing a constraint on the accumulated concentration of
reactant B
- Introducing high frequency penalties on the control inputs

ty

. 2 2 2 2

m;n/ QACH out T OBCB out T OB14B1,f + AB2qR2 §+
0

ar, T} + o, T2 dt
subject to & = f(x,u)
T,; <155, i=1.N cp1 <600, cpo <1200
0<gp1 £0.7, 0<gp2<0.7
~1.5<Ty <2, —15<T.<0.7
30 <Ty <80, 20<T.<80



The Optimization Problem—QOptimica

Robust optimization formulation

optimization PlateReactorOptimization (objective=cost(finalTime),
startTime =0,
finalTime=150)
PlateReactor pr(u_T_cool_setpoint (free=true), u_TfeedA_setpoint (free=true),
u_Bl_setpoint (free=true), u_B2_setpoint (free=true));
parameter Real sc_u = 670/50 "Scaling factor";
parameter Real sc_c = 2392/50 "Scaling factor";
Real cost (start=0);
equation
der (cost) = 0.1*pr.cA[30]"2%sc_c"2 + 0.025*pr.cB[30]"2*sc_c"2 + 1xpr.u_Bl_setpoint_f "2
1*pr.u_B2_setpoint_f "2 + 1xder(pr.u_T_cool_setpoint ) 2*sc_u~2 +
1*xder (pr.u_TfeedA_setpoint ) 2*sc_u"2;

constraint
pr.Tr/u_sc<=(155+273)* ones (30) ;

pr.cB[1]<=200/sc_c; pr.cB[16]<=400/sc_c;

pr.u_B1l_setpoint >=0; pr.u_Bl_setpoint<=0.7;
pr.u_B2_setpoint >=0; pr.u_B2_setpoint<=0.7;

pr.u_T_cool_setpoint >=(15+273)/sc_u; pr.u_T_cool_setpoint <=(80+273)/sc_u;
pr.u_TfeedA_setpoint >=(30+273)/sc_u; pr.u_TfeedA_setpoint <=(80+273)/sc_u;

der (pr.u_T_cool_setpoint )>=-1.5/sc_u; der(pr.u_T_cool_setpoint )<=0.7/sc_u;
der (pr.u_TfeedA_setpoint )>=-1.5/sc_u; der (pr.u_TfeedA_setpoint)<=2/sc_u;
end PlateReactorOptimization;



CB,1 [mol/m3] CB,2 [mol/m3] T [°C] T5 [°C]
1500

150 150
1000 1000
100 100
500 500
50 50
0 0
0 50 100 0 50 100 O 50 100 0 50 100
qB1 [] qB2 [ Ty [°C] T, [°C]
0.6 80 80
0.4 0.4 60 60
0.2 0.2 40 40
0 0 20 20
50 100 0 50 00 0 _ 50 100 0 _ 50 _ 100
Time [sl Time [sl Time [s] Time [s]

Almost as fast, but more robust with lower c¢g-constraints
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