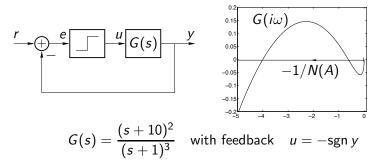
Lecture 7: Anti-windup and friction compensation

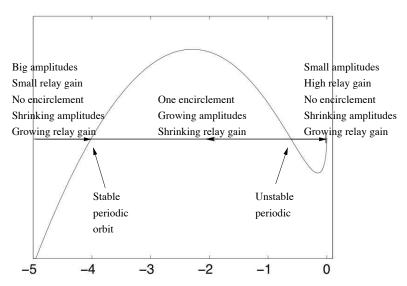
- Compensation for saturations (anti-windup)
- Friction models
- Friction compensation


Material

Lecture slides

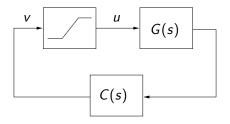
Course Outline

Lecture 1-3	Modelling and basic phenomena (linearization, phase plane, limit cycles)
Lecture 2-6	Analysis methods (Lyapunov, circle criterion, describing functions)
Lecture 7-8	Common nonlinearities (Saturation, friction, backlash, quantization)
Lecture 9-13	Design methods (Lyapunov methods, Backstepping, Optimal control)
Lecture 14	Summary

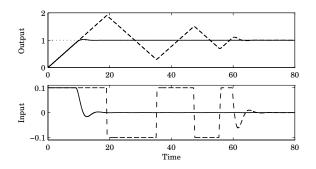

Last lecture: Stable periodic solution

gives one stable and one unstable limit cycle. The left most intersection corresponds to the stable one.

Periodic Solutions in Relay System


The relay gain N(A) is higher for small A:

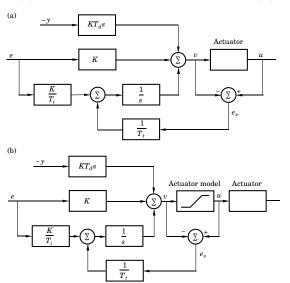
Today's Goal


- To be able to design and analyze antiwindup schemes for
 - ► PID
 - state-space systems
 - and Kalman filters (observers)
- To understand common models of friction
- ► To design and analyze friction compensation schemes

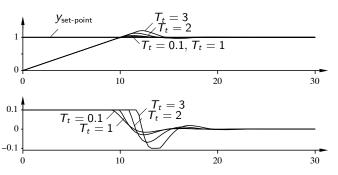
Windup – The Problem

The feedback path is broken when u saturates The controller C(s) is a dynamic system Problems when controller is unstable (or stable but not AS) Example: I-part in PID-controller

Example-Windup in PID Controller

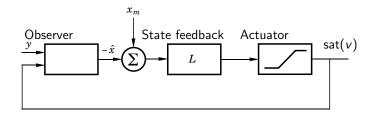


Dashed line: ordinary PID-controller


Solid line: PID-controller with anti-windup

Anti-windup for PID-Controller ("Tracking")

Anti-windup (a) with actuator output available and (b) without


Choice of Tracking Time T_t

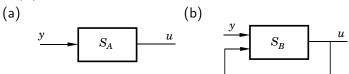
With very small T_t (large gain $1/T_t$), spurious errors can saturate the output, which leads to accidental reset of the integrator. Too large T_t gives too slow reaction (little effect).

The tracking time T_t is the design parameter of the anti-windup. Common choices: $T_t = T_i$ or $T_t = \sqrt{T_i T_d}$.

State feedback with Observer

$$\dot{\hat{x}} = A\hat{x} + B \operatorname{sat}(v) + K(y - C\hat{x})$$

$$v = L(x_m - \hat{x})$$


 \hat{x} is estimate of process state, x_m desired (model) state. Need model of saturation if sat(v) is not measurable

Antiwindup – General State-Space Controller

State-space controller:

$$\dot{x}_c(t) = Fx_c(t) + Gy(t)$$

$$u(t) = Cx_c(t) + Dy(t)$$

Windup possible if F is unstable and u saturates.

Idea:

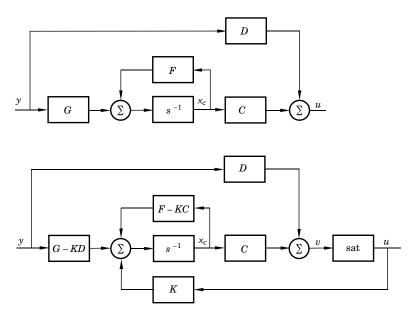
Rewrite representation of control law from (a) to (b) such that:

- (a) and (b) have same input-output relation
- (b) behaves better when feedback loop is broken, if S_B stable

Antiwindup – General State-Space Controller

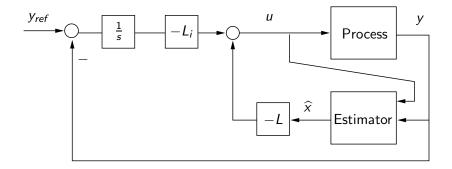
Mimic the observer-based controller:

$$\dot{x}_c = Fx_c + Gy + K \underbrace{\left(u - Cx_c - Dy\right)}_{=0}$$


$$= (F - KC)x_c + (G - KD)y + Ku$$

$$= F_0x_c + G_0y + Ku$$

Design so that $F_0 = F - KC$ has desired stable eigenvalues. Then use controller


$$\dot{x}_c = F_0 x_c + G_0 y + K u$$
$$u = sat (C x_c + D y)$$

State-space controller without and with anti-windup:

5 Minute Exercise

How would you do antiwindup for the following state-feedback controller with observer and integral action ?

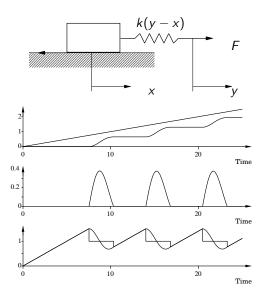
Saturation

Optimal control theory (later)

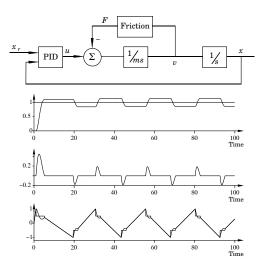
Multi-loop Anti-windup (Cascaded systems):

Difficult problem, several suggested solutions Turn off integrator in outer loop when inner loop saturates

Friction

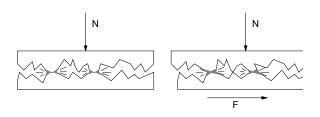

Present almost everywhere

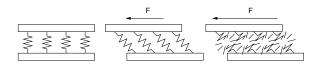
- Often bad
 - Friction in valves and mechanical constructions
- Sometimes good
 - Friction in brakes
- Sometimes too small
 - Earthquakes


Problems

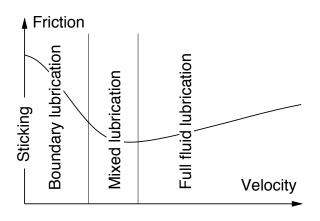
- How to model friction
- ▶ How to compensate for friction

Stick-slip Motion

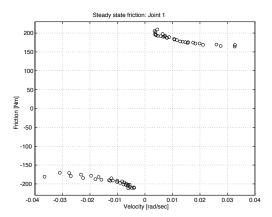

Position Control of Servo with Friction - Hunting



3 Minute Exercise


What are the signals in the previous plots? What model of friction has been used in the simulation?

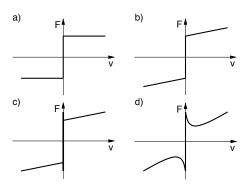
Friction


Lubrication Regimes

Hard to get good model at v = 0

Stribeck Effect

For low velocity: friction increases with decreasing velocity Stribeck (1902)


Frictional Lag

Dynamics are important also outside sticking regime Hess and Soom (1990)

Experiment with unidirectional motion $v(t) = v_0 + a \sin(\omega t)$ Hysteresis effect!

Classical Friction Models

c)
$$F(t) = \begin{cases} F_c \text{ sign } v(t) + F_v v(t) & v(t) \neq 0 \\ \max(\min(F_e(t), F_s), -F_s) & v(t) = 0 \end{cases}$$

$$F_e(t) = \text{ external applied force } F_c, F_v, F_s \text{ constants}$$

Advanced Friction Models

See PhD-thesis by Henrik Olsson

- Karnopp model
- Armstrong's seven parameter model
- Dahl model
- ▶ Bristle model
- Reset integrator model
- Bliman and Sorine
- Wit-Olsson-strm

Demands on a model

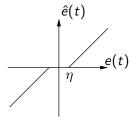
To be useful for control the model should be

- sufficiently accurate,
- suitable for simulation,
- simple, few parameters to determine.
- physical interpretations, insight

Pick the simplest model that does the job! If no stiction occurs the v = 0-models are not needed.

Friction Compensation

- Lubrication
- Integral action (beware!)
- Dither
- Non-model based control
- Model based friction compensation
- Adaptive friction compensation

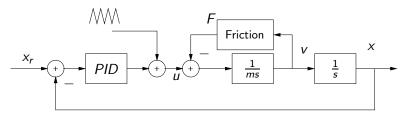

Integral Action

- The integral action compensates for any external disturbance
- Good if friction force changes slowly ($v \approx \text{constant}$).
- To get fast action when friction changes one must use much integral action (small T_i)
- Gives phase lag, may cause stability problems etc

Deadzone - Modified Integral Action

Modify integral part to $I = \frac{K}{T_i} \int_0^t \hat{e}(t) d\tau$

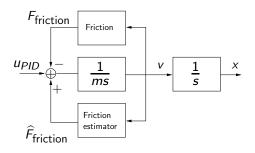
where input to integrator
$$\hat{e} = \left\{ egin{array}{ll} e(t) - \eta & e(t) > \eta \\ 0 & |e(t)| < \eta \\ e(t) + \eta & e(t) < -\eta \end{array} \right.$$


Advantage: Avoid that small static error introduces limit cycle

Disadvantage: Must accept small error (will not go to zero)

Mechanical Vibrator-Dither

Avoids sticking at v=0 where there usually is high friction by adding high-frequency mechanical vibration (dither)



Cf., mechanical maze puzzle (labyrintspel)

Adaptive Friction Compensation

Coulomb Friction $F = a \operatorname{sgn}(v)$

Assumption: v measurable.

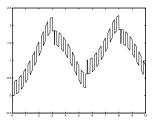
Friction estimator:

$$\dot{z} = ku_{PID} \operatorname{sgn}(v)$$
 $\hat{a} = z - km|v|$
 $\hat{F}_{friction} = \hat{a} \operatorname{sgn}(v)$

Result: $e = a - \hat{a} \rightarrow 0$ as $t \rightarrow \infty$, since

$$\frac{de}{dt} = -\frac{d\hat{a}}{dt} = -\frac{dz}{dt} + km\frac{d}{dt}|v|$$

$$= -ku_{PID}\operatorname{sgn}(v) + km\dot{v}\operatorname{sgn}(v)$$

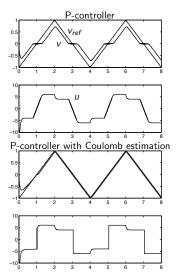

$$= -k\operatorname{sgn}(v)(u_{PID} - m\dot{v})$$

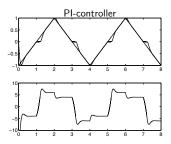
$$= -k\operatorname{sgn}(v)(F - \hat{F})$$

$$= -ke$$

Remark: Careful with $\frac{d}{dt}|v|$ at v=0.

The Knocker
Combines Coulomb compensation and square wave dither


Tore Hgglund, Innovation Cup winner + patent 1997


Example–Friction Compensation

Velocity control with

- a) P-controller
- b) PI-controller
- c) P + Coulomb estimation

Results

Next Lecture

- Backlash
- Quantization