
Lecture 3

◮ Phase-plane analysis

◮ Classification of singularities

◮ Stability of periodic solutions

Material

◮ Glad and Ljung: Chapter 13

◮ Khalil: Chapter 2.1–2.3

◮ Lecture notes



Today’s Goal

You should be able to

◮ sketch phase portraits for two-dimensional systems

◮ classify equilibria into nodes, focus, saddle points, and center
points.

◮ analyze limit cycles through Poincaré maps



First glipse of phase plane portraits: Consider the system

ẋ1 = x21 + x2

ẋ2 = −x1 − x2

x1 ’ = x12 + x2
x2 ’ = − x1 − x2
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First glipse of phase plane portraits: Consider the system
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Flow-interpretation: To each point (x1, x2) in the plane there is an
associated flow-direction dx

dt = f(x1, x2)



First glipse of phase plane portraits: Consider the system

ẋ1 = x21 + x2

ẋ2 = −x1 − x2

x1 ’ = x12 + x2
x2 ’ = − x1 − x2
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In the point (x1, x2) = (1, 2) the vector field is pointing in the
direction (12 + 2, −1− 2) =(3, −3).



Vectorfields in Oceanography ...

On 10 January 1992, during
a storm in the North Pacific
Ocean close to the Interna-
tional Date Line, twelve 40-foot
(13.3 m) intermodal containers
were washed overboard. One
of these containers held 28,800
Floatees,...

http://en.wikipedia.org/wiki/Friendly_Floatees



Linear Systems Revival

d

dt

[
x1
x2

]

= A

[
x1
x2

]

Analytic solution: x(t) = eAtx(0).
If A is diagonalizable, then

eAt = V eΛtV −1 =
[
v1 v2

]
[
eλ1t 0
0 eλ2t

]
[
v1 v2

]−1

where v1, v2 are the eigenvectors of A (Av1 = λ1v1 etc).

Matlab:
>> [V,Lambda]=eig(A)



Example: Two real negative eigenvalues

Given the eigenvalues λ1
︸︷︷︸

faster

< λ2
︸︷︷︸

slower

< 0, with corresponding

eigenvectors v1 and v2, respectively.

Solution: x(t) = c1e
λ1tv1 + c2e

λ2tv2

Fast eigenvalue/vector: x(t) ≈ c1e
λ1tv1 + c2v2 for small t.

Moves along the fast eigenvector for small t

Slow eigenvalue/vector: x(t) ≈ c2e
λ2tv2 for large t.

Moves along the slow eigenvector towards x = 0 for large t



Example—Stable Node

ẋ =

[
−1 1
0 −2

]

x

(λ1, λ2) = (−1,−2) and
[
v1 v2

]
=

[
1 −1
0 1

]

v1 is the slow direction and v2 is the fast.



Equilibrium Points for Linear Systems

stable node unstable node saddle point

Imλi = 0 : λ1, λ2 < 0 λ1, λ2 > 0 λ1 < 0 < λ2

Imλi 6= 0 : Reλi < 0 Reλi > 0 Reλi = 0
stable focus unstable focus center point

Re λ

Im λ

x1

x2



Example—Unstable Focus

ẋ =

[
σ −ω
ω σ

]

x, σ, ω > 0, λ1,2 = σ ± iω

x(t) = eAtx(0) =

[
1 1
−i i

] [
eσteiωt 0

0 eσte−iωt

] [
1 1
−i i

]−1

x(0)

In polar coordinates r =
√

x21 + x22, θ = arctanx2/x1
(x1 = r cos θ, x2 = r sin θ):

ṙ = σr

θ̇ = ω



Example- unstable focus cont’d

λ1,2 = 1± i λ1,2 = 0.3± i



Equilibrium Points for Linear Systems

stable node unstable node saddle point

Imλi = 0 : λ1, λ2 < 0 λ1, λ2 > 0 λ1 < 0 < λ2

Imλi 6= 0 : Reλi < 0 Reλi > 0 Reλi = 0
stable focus unstable focus center point

Re λ

Im λ

x1

x2



4 minute exercise

What is the phase portrait if λ1 = λ2?

Hint: For λ1 = λ2 = λ there are two different cases: only one
linearly independent eigenvector or all vectors are eigenvectors



Star Node or Multi-Tangent Node

Case I: If

ẋ =

[
λ 0
0 λ

]

x, rank (λI −A) = 0

then the solution is

x1(t) = x1(0)e
λt

x2(t) = x2(0)e
λt



One Tangent Node

Case II: If

ẋ =

[
λ 1
0 λ

]

x, rank (λI −A) = 1

then the solution is

x1(t) = x1(0)e
λt + tx2(0)e

λt

x2(t) = x2(0)e
λt

There is only one eigenvector: v1 = αv2 =
[
1 0

]T
.



Linear Time-Varying Systems (warning)

Warning: Pointwise “Left Half-Plane eigenvalues” of A(t)
(i.e., time-varying systems) do NOT impose stability!!!

A(t) =

(
−1 + α cos2 t 1− α sin t cos t

−1− α sin t cos t −1 + α sin2 t

)

, α > 0

Pointwise eigenvalues are given by

λ(t) = λ =
α− 2±

√
α2 − 4

2

which are in the LHP for 0 < α < 2 (and here even constant). However,

x(t) =

(
e(α−1)t cos t e−t sin t
−e(α−1)t sin t e−t cos t

)

x(0),

which is an unbounded solution for α > 1.



Phase-Plane Analysis for Nonlinear Systems

Close to equilibria “nonlinear system” ≈ “linear system”.
Theorem Assume

ẋ = f(x)

is linearized at x0 so that

ẋ = Ax+ g(x),

where g ∈ C1 and g(x)−g(x0)
‖x−x0‖

→ 0 as x → x0.

If ż = Az has a focus, node, or saddle point, then ẋ = f(x) has
the same type of equilibrium at the origin.
If the linearized system has a center, then the nonlinear system has
either a center or a focus.



How to Draw Phase Portraits

If done by hand then

1. Find equilibria (also called singularities)

2. Sketch local behavior around equilibria

3. Sketch (ẋ1, ẋ2) for some other points. Use that dx1

dx2
= ẋ1

ẋ2
.

4. Try to find possible limit cycles

5. Guess solutions

Matlab: pptool6/pptool7, dfield6/dfield7, dee,

ICTools, etc.
PPTool and some other tools for Matlab is available on or via

http://www.control.lth.se/course/FRTN05



Phase-Locked Loop

A PLL tracks phase θin(t) of a signal sin(t) = A sin[ωt+ θin(t)].

Phase
Detector Filter VCO

sin “θout”

sin(·)
−

e K

1 + sT

1

s

θin θoutθ̇out



Singularity Analysis of PLL

Let x1(t) = θout(t) and x2(t) = θ̇out(t).
Assume K,T > 0 and θin(t) = θin constant.

ẋ1 = x2

ẋ2 = −T−1x2 +KT−1 sin(θin − x1)

Singularities are (θin + nπ, 0), since

ẋ1 = 0 ⇒ x2 = 0

ẋ2 = 0 ⇒ sin(θin − x1) = 0 ⇒ x1 = θin + nπ



Singularity Classification of Linearized System

Linearization gives the following characteristic equations:
n even:

λ2 + T−1λ+KT−1 = 0

K > (4T )−1 gives stable focus
0 < K < (4T )−1 gives stable node

n odd:
λ2 + T−1λ−KT−1 = 0

Saddle points for all K,T > 0



Phase-Plane for PLL

K = 1/2, T = 1: Focus
(
2kπ, 0

)
, saddle points

(
(2k + 1)π, 0

)



Summary

Phase-plane analysis limited to second-order systems (sometimes it
is possible for higher-order systems to fix some states)
Many dynamical systems of order three and higher not fully
understood (chaotic behaviors etc.)



Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

xk+1 = f(xk)

is asymptotically stable at x∗ if the linearization

∂f

∂x

∣
∣
∣
x∗

has all eigenvalues in |λ| < 1

(that is, within the unit circle).



Example (cont’d): Numerical iteration

xk+1 = f(xk)

to find fixed point
x∗ = f(x∗)

When does the iteration converge?

x∗x∗

x∗x∗x∗

xx
xx

f(x)

f(x)
f(x)

f(x)

?



Periodic Solutions: x(t+ T ) = x(t)

Example of an asymptotically stable periodic solution:

ẋ1 = x1 − x2 − x1(x
2
1 + x2

2)

ẋ2 = x1 + x2 − x2(x
2
1 + x2

2)
(1)



Periodic solution: Polar coordinates.

Let
x1 = r cos θ ⇒ dx1 = cos θdr − r sin θdθ

x2 = r sin θ ⇒ dx2 = sin θdr + r cos θdθ

⇒ (
ṙ

θ̇

)

=
1

r

(
r cos θ r sin θ
− sin θ cos θ

)(
ẋ1

ẋ2

)

Now
ẋ1 = r(1 − r2) cos θ − r sin θ

ẋ2 = r(1 − r2) sin θ + r cos θ

which gives
ṙ = r(1 − r2)

θ̇ = 1

Only r = 1 is a stable equilibrium!



A system has a periodic solution if for some T > 0

x(t+ T ) = x(t), ∀t ≥ 0

Note that a constant value for x(t) by convention not is regarded
as periodic.

◮ When does a periodic solution exist?

◮ When is it locally (asymptotically) stable? When is it globally
asymptotically stable?



Poincaré map (“Stroboscopic map”)

ẋ = f(x), x ∈ R
n

ϕt(q) is the solution starting in q after time t.
Σ ⊂ R

n−1 is a hyperplane transverse to ϕt.
The Poincaré map P : Σ → Σ is

P (q) = ϕτ(q)(q), τ(q) is the first return time

q ϕt(q)

Σ

P (q)



Limit Cycles

If a simple periodic orbit pass through q∗, then P (q∗) = q∗.
Such an orbit is called a limit cycle.
q∗ is called a fixed point of P.

P (q∗) = q∗

Does the iteration qk+1 = P (qk) converge to q∗?



Locally Stable Limit Cycles

The linearization of P around q∗ gives a matrix W = ∂P
∂q

∣
∣
∣
q∗

so

(qk+1 − q∗) ≈ W (qk − q∗),

if qk is close to q∗.

◮ If all |λi(W )| < 1, then the corresponding limit cycle is locally
asymptotically stable.

◮ If |λi(W )| > 1, then the limit cycle is unstable.



Linearization Around a Periodic Solution

The linearization of

ẋ(t) = f(x(t))

around x0(t) = x0(t+ T ) is

˙̃x(t) = A(t)x̃(t)

A(t) =
∂f

∂x

(
x0(t)

)
= A(t+ T )

P is the map from the solution at t = 0 to t = τ(q).



Example—Stable Unit Circle

Rewrite (1) in polar coordinates:

ṙ = r(1− r2)

θ̇ = 1

Choose Σ = {(r, θ) : r > 0, θ = 2πk}.
The solution is

ϕt(r0, θ0) =

(

[1 + (r−2
0 − 1)e−2t]−1/2, t+ θ0

)

First return time from any point (r0, θ0) ∈ Σ is τ(r0, θ0) = 2π.



Example—Stable Unit Circle

The Poincaré map is

P (r0) = [1 + (r−2
0 − 1)e−2·2π]−1/2

r0 = 1 is a fixed point.
The limit cycle that corresponds to r(t) = 1 and θ(t) = t is locally
asymptotically stable, because

W =
dP

dr0
(1) =

[
e−4π

]

and

|W | =
∣
∣
∣
∣

dP

dr0
(1)

∣
∣
∣
∣
= |e−4π| < 1



Example—The Hand Saw

Can we stabilize the inverted pendulum by vertical oscillations?



The Hand Saw—Poincaré Map

ẋ1 = x2

ẋ2 =
1

ℓ

(

g + aω2 sinx3

)

sinx1

ẋ3(t) = ω

Choose Σ = {x3 = 2πk}.

Σ



The Hand Saw–Poincaré Map

q∗ = 0 and T = 2π/ω. No explicit expression for P . It is, however,
easy to determine W numerically. Do two (or preferably many
more) different simulations with different, small, initial conditions
x(0) = y and x(0) = z.
Solve W through (least squares solution of)



x(T )
∣
∣
∣
x(0)=y

x(T )
∣
∣
∣
x(0)=z



 = W


y z




This gives for a = 1cm, ℓ = 17cm, ω = 180

W =




1.37 0.035
−3.86 0.630





which has eigenvalues (1.047, 0.955). Unstable.
W is stable for ω > 183



The Hand Saw—Stability Condition

Make the assumptions that

ℓ ≫ a and aω2 ≫ g

Then some calculations show that the Poincaré map is stable at
q∗ = 0 when

ω >

√
2gℓ

a

a = 1 cm and ℓ = 17 cm give ω > 182.6 rad/s (29 Hz).



The Hand Saw—Simulation

Simulation results give good agreement
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Next Lecture

◮ Lyapunov methods for stability analysis

Lyapunov generalized the idea of: If the total energy is dissipated
along the trajectories (i.e the solution curves), the system must be
stable.

Benefit: Might conclude that a system is stable or asymptotically
stable without solving the nonlinear differential equation.



Lab 1: sign-up starts on Monday


