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Overview Lecture 1

• Practical information
• Course contents
• Nonlinear control systems phenomena
• Nonlinear differential equations



Course Goal

To provide students with solid theoretical foundations of nonlinear

control systems combined with good engineering ability

You should after the course be able to

◮ recognize common nonlinear control problems,

◮ use some powerful analysis methods, and

◮ use some practical design methods.



Today’s Goal

◮ Recognize some common nonlinear phenomena

◮ Transform differential equations to autonomous form,

first-order form, and feedback form

◮ Describe saturation, dead-zone, relay with hysteresis, backlash

◮ Calculate equilibrium points



Course Material

◮ Textbook
◮ Glad and Ljung, Reglerteori, flervariabla och olinjra metoder,

2003, Studentlitteratur,ISBN 9-14-403003-7 or the English
translation Control Theory, 2000, Taylor & Francis Ltd, ISBN
0-74-840878-9. The course covers Chapters 11-16,18. (MPC
and optimal control not covered in the other alternative
textbooks.)

◮ H. Khalil, Nonlinear Systems (3rd ed.), 2002, Prentice Hall,
ISBN 0-13-122740-8. A good, a bit more advanced text.

◮ ALTERNATIVE: Slotine and Li, Applied Nonlinear Control,
Prentice Hall, 1991. The course covers chapters 1-3 and 5,
and sections 4.7-4.8, 6.2, 7.1-7.3.



Course Material, cont.

◮ Handouts (Lecture notes + extra material)

◮ Exercises (can be downloaded from the course home page)

◮ Lab PMs 1, 2 and 3

◮ Home page

http://www.control.lth.se/course/FRTN05/

◮ Matlab/Simulink other simulation software

see home page



Lectures and labs

The lectures (28 hours) are given as follows:

Mon 13–15, E:C Nov 2 – Dec 7
Wed 8–10, E:C Nov 4 – Dec 9
Fri 8-10 E:C Nov 6

Thu 8-10 M:2112B Dec 10

Lectures are given in English.

———————



Lectures and labs

The lectures (28 hours) are given as follows:

Mon 13–15, E:C Nov 2 – Dec 7
Wed 8–10, E:C Nov 4 – Dec 9
Fri 8-10 E:C Nov 6
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The three laboratory experiments are mandatory.
Sign-up lists are posted on the web at least one week before the
first laboratory experiment. The lists close one day before the first

session.

The Laboratory PMs are available at the course homepage.
Before the lab sessions some home assignments have to be done.
No reports after the labs.



Exercise sessions and TAs
The exercises (28 hours) are offered twice a week

Tue 15:15-17:00 M:2112B Wed 15:15-17:00 M:2112B

NOTE: The exercises are held in the seminar room of the Automatic
Control Department, M-building, second floor see schedule on home

page.

EXCEPTIONS: (i) for the first two weeks only Wednesday exercise
sessions are scheduled at 13:15–15:00 instead of 15:15-17:00.

(ii) on November 24 and 25 the exercise sessions will be held in a

different room to be announced in due time

Christian Grussler Olof Troeng Mahdi Ghazei



The Course

◮ 14 lectures

◮ 14 exercises

◮ 3 laboratories

◮ 5 hour exam: January 13, 2015, 14:00-19:00, MA10 I-J.
Open-book exam: Lecture notes but no old exams or exercises
allowed.



Course Outline

Lecture 1-3 Modelling and basic phenomena
(linearization, phase plane, limit cycles)

Lecture 2-6 Analysis methods
(Lyapunov, circle criterion, describing functions))

Lecture 7-8 Common nonlinearities
(Saturation, friction, backlash, quantization))

Lecture 9-13 Design methods
(Lyapunov methods, Backstepping, Optimal control)

Lecture 14 Summary



Todays lecture

Common nonlinear phenomena

◮ Input-dependent stability

◮ Stable periodic solutions

◮ Jump resonances and subresonances

Nonlinear model structures

◮ Common nonlinear components

◮ State equations

◮ Feedback representation



Linear Systems

S
u y = S(u)

Definitions: The system S is linear if

S(αu) = αS(u), scaling

S(u1 + u2) = S(u1) + S(u2), superposition

A system is time-invariant if delaying the input results in a delayed
output:

y(t − τ) = S(u(t − τ))



Linear time-invariant systems are easy to analyze

Different representations of same system/behavior

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) = 0

y(t) = g(t) ⋆ u(t) =

∫

g(r)u(t − r)dr

Y (s) = G (s)U(s)

Local stability = global stability:
Eigenvalues of A (= poles of G (s)) in left half plane

Superposition:
Enough to know step (or impulse) response

Frequency analysis possible:
Sinusoidal inputs give sinusoidal outputs



Linear models are not always enough

Example: Ball and beam

x

mg

mg sin(φ)

φ

Linear model (acceleration along beam) :

Combine F = m · a = m d2x
dt2

with F = mg sin(φ):

ẍ(t) = g sin(φ(t))



Linear models are not enough

x = position (m) φ = angle (rad) g = 9.81 (m/s2)
Can the ball move 0.1 meter in 0.1 seconds with constant φ?



Linear models are not enough

x = position (m) φ = angle (rad) g = 9.81 (m/s2)
Can the ball move 0.1 meter in 0.1 seconds with constant φ?
Linearization: sinφ ∼ φ for φ ∼ 0

{

ẍ(t) = gφ

x(0) = 0

Solving the above gives x(t) = t2

2 gφ

For x(0.1) = 0.1, one needs φ = 2∗0.1
0.12∗g

≥ 2 rad

Clearly outside linear region!
Contact problem, friction, centripetal force, saturation



Linear models are not enough

x = position (m) φ = angle (rad) g = 9.81 (m/s2)
Can the ball move 0.1 meter in 0.1 seconds with constant φ?
Linearization: sinφ ∼ φ for φ ∼ 0

{

ẍ(t) = gφ

x(0) = 0

Solving the above gives x(t) = t2

2 gφ

For x(0.1) = 0.1, one needs φ = 2∗0.1
0.12∗g

≥ 2 rad

Clearly outside linear region!
Contact problem, friction, centripetal force, saturation

How fast can it be done? (Optimal control)



Warm-Up Exercise: 1-D Nonlinear Control System

ẋ = x2 − x + u

◮ stability for u = 0?

◮ stability for constant u = b?

◮ stability with linear feedback u = ax + b?

◮ stability with non-linear feedback u(x) =?



Stability Can Depend on Amplitude

?+ 1
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1
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Motor Valve Process

−1

r y

Valve characteristic f (x) =???
Step changes of amplitude, r = 0.2, r = 1.68, and r = 1.72



Stability Can Depend on Amplitude

+ 1
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Motor Valve Process

−1

r y

Valve characteristic f (x) = x2

Step changes of amplitude, r = 0.2, r = 1.68, and r = 1.72



Step Responses
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Stable Periodic Solutions

Example: Motor with back-lash

y

Sum

5

P−controller

1

5s  +s2

Motor

0

Constant

Backlash

−1

Motor: G (s) = 1
s(1+5s)

Controller: K = 5



Stable Periodic Solutions

Output for different initial conditions:
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Frequency and amplitude independent of initial conditions!
Several systems use the existence of such a phenomenon



Relay Feedback Example
Period and amplitude of limit cycle are used for autotuning

Σ Process

PID

Relay

A

T

u y

  − 1
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u
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[ patent: T Hgglund and K J strm]



Jump Resonances

y
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Sine Wave

Saturation

20
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Motor

−1

Response for sinusoidal depends on initial condition
Problem when doing frequency response measurement



Jump Resonances

u = 0.5 sin(1.3t), saturation level =1.0

Two different initial conditions
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give two different amplifications for same sinusoid!



Jump Resonances

Measured frequency response (many-valued)
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New Frequencies
Example: Sinusoidal input, saturation level 1

a sin t y
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New Frequencies

Example: Electrical power distribution

THD = Total Harmonic Distortion =
∑

∞

k=2 energy in tone k

energy in tone 1

Nonlinear loads: Rectifiers, switched electronics, transformers
Important, increasing problem
Guarantee electrical quality
Standards, such as THD < 5%



New Frequencies

Example: Mobile telephone

Effective amplifiers work in nonlinear region

Introduces spectrum leakage

Channels close to each other

Trade-off between effectivity and linearity



Subresonances

Example: Duffing’s equation ÿ + ẏ + y − y3 = a sin(ωt)
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When is Nonlinear Theory Needed?

◮ Hard to know when - Try simple things first!

◮ Regulator problem versus servo problem

◮ Change of working conditions (production on demand, short
batches, many startups)

◮ Mode switches

◮ Nonlinear components

How to detect? Make step responses, Bode plots

◮ Step up/step down

◮ Vary amplitude

◮ Sweep frequency up/frequency down



Some Nonlinearities

Static – dynamic

Sign

Saturation

Relay

eu

Math
Function

Look−Up
Table

Dead Zone

Coulomb &
Viscous Friction

Backlash

|u|

Abs



Nonlinear Differential Equations

Problems

◮ No analytic solutions

◮ Existence?

◮ Uniqueness?

◮ etc



Finite escape time

Example: The differential equation

dx

dt
= x2, x(0) = x0

has solution

x(t) =
x0

1− x0t
, 0 ≤ t <

1

x0

Finite escape time

tf =
1

x0



Finite Escape Time
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Uniqueness Problems
Example: The equation ẋ =

√
x , x(0) = 0 has many solutions:

x(t) =

{

(t − C )2/4 t > C

0 t ≤ C
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Compare with water tank:

dh/dt = −a
√
h, h : height (water level)

Change to backward-time: “If I see it empty, when was it full?”)



Local Existence and Uniqueness

For R > 0, let ΩR denote the ball ΩR = {z : ‖z − a‖ ≤ R}.

Theorem

If, f is Lipschitz-continuous in ΩR , i.e.,

‖f (z)− f (y)‖ ≤ K‖z − y‖, for all z , y ∈ ΩR ,

then
{

ẋ(t) = f (x(t))

x(0) = a

has a unique solution

x(t) , 0 ≤ t < R/CR ,

where CR = maxx∈ΩR
‖f (x)‖



Global Existence and Uniqueness

Theorem

If f is Lipschitz-continuous in Rn, i.e.,

‖f (z)− f (y)‖ ≤ K‖z − y‖, for all z , y ∈ Rn ,

then
ẋ(t) = f (x(t)), x(0) = a

has a unique solution

x(t) , t ≥ 0 .



State-Space Models

◮ State vector x

◮ Input vector u

◮ Output vector y

general: f (x , u, y , ẋ , u̇, ẏ , . . .) = 0

explicit: ẋ = f (x , u), y = h(x)

affine in u: ẋ = f (x) + g(x)u, y = h(x)

linear time-invariant: ẋ = Ax + Bu, y = Cx



Transformation to Autonomous System

Nonautonomous:
ẋ = f (x , t)

Always possible to transform to autonomous system
Introduce xn+1 = time

ẋ = f (x , xn+1)

ẋn+1 = 1



Transformation to First-Order System

Assume dky

dtk
highest derivative of y

Introduce x =
[

y
dy
dt

. . . dk−1y

dtk−1

]T

Example: Pendulum

MR θ̈ + k θ̇ +MgR sin θ = 0

x =
[

θ θ̇
]T

gives

ẋ1 = x2

ẋ2 = − k

MR
x2 −

g

R
sin x1



A Standard Form for Analysis

Transform to the following form

G (s)

Nonlinearities



Example, Closed Loop with Friction

_

_
GC

Friction

0 u

F

v

⇐⇒

−G
1+CG

Friction



Equilibria (=singular points)

Put all derivatives to zero!

General: f (x0, u0, y0, 0, 0, 0, . . .) = 0
Explicit: f (x0, u0) = 0
Linear: Ax0 + Bu0 = 0 (has analytical solution(s)!)



Multiple Equilibria

Example: Pendulum

MR θ̈ + k θ̇ +MgR sin θ = 0

Equilibria given by θ̈ = θ̇ = 0 =⇒ sin θ = 0 =⇒ θ = nπ
Alternatively,

ẋ1 = x2

ẋ2 = − k

MR
x2 −

g

R
sin x1

gives x2 = 0, sin(x1) = 0, etc



Next Lecture

◮ Linearization

◮ Stability definitions

◮ Simulation in Matlab


