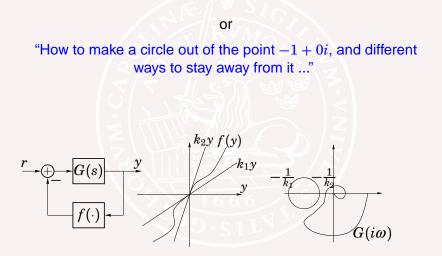
Lecture 5 — Input–output stability



Course Outline

Lecture 1-3 Modelling and basic phenomena (linearization, phase plane, limit cycles)

- Lecture 4-6 Analysis methods (Lyapunov, circle criterion, describing functions)
- Lecture 7-8 Common nonlinearities (Saturation, friction, backlash, quantization)
- Lecture 9-13 Design methods (Lyapunov methods, Backstepping, Optimal control)

Lecture 14 Summary

Today's Goal

To understand

- signal norms
- system gain
- bounded input bounded output (BIBO) stability

To be able to analyze stability using

- the Small Gain Theorem,
- the Circle Criterion,
- Passivity

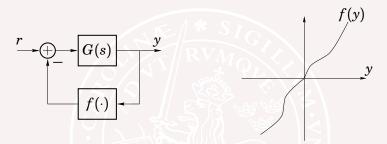
Material

• [Glad & Ljung]: Ch 1.5-1.6, 12.3

Iecture slides

[Khalil]: Ch 5-7.1

History



For what G(s) and $f(\cdot)$ is the closed-loop system stable?

- Lur'e and Postnikov's problem (1944)
- Aizerman's conjecture (1949) (False!)
- Kalman's conjecture (1957) (False!)
- Solution by Popov (1960) (Led to the Circle Criterion)

Gain

Idea: Generalize static gain to nonlinear dynamical systems

$$u \longrightarrow S \longrightarrow y$$

The gain γ of S measures the largest amplification from u to y

Here S can be a constant, a matrix, a linear time-invariant system, a nonlinear system, etc

Question: How should we measure the size of *u* and *y*?

Norms

A norm $\|\cdot\|$ measures size.

A **norm** is a function from a space Ω to \mathbf{R}^+ , such that for all $x, y \in \Omega$

•
$$||x|| \ge 0$$
 and $||x|| = 0 \Leftrightarrow x = 0$

•
$$||x + y|| \le ||x|| + ||y||$$

•
$$\|\alpha x\| = |\alpha| \cdot \|x\|$$
, for all $\alpha \in \mathbf{R}$

Examples

Euclidean norm:
$$||x|| = \sqrt{x_1^2 + \dots + x_n^2}$$

Max norm: $||x|| = \max\{|x_1|, \dots, |x_n|\}$

Signal Norms

A signal x(t) is a function from \mathbf{R}^+ to \mathbf{R}^d . A signal norm is a way to measure the size of x(t).

Examples

2-norm (energy norm): $||x||_2 = \sqrt{\int_0^\infty |x(t)|^2 dt}$ sup-norm: $||x||_\infty = \sup_{t \in \mathbf{R}^+} |x(t)|$

The space of signals with $||x||_2 < \infty$ is denoted \mathcal{L}_2 .

Parseval's Theorem

Theorem If $x, y \in \mathcal{L}_2$ have the Fourier transforms

$$X(i\omega) = \int_0^\infty e^{-i\omega t} x(t) dt, \qquad Y(i\omega) = \int_0^\infty e^{-i\omega t} y(t) dt,$$

then

$$\int_0^\infty y^T(t)x(t)dt = rac{1}{2\pi}\int_{-\infty}^\infty Y^*(i\omega)X(i\omega)d\omega.$$

In particular

$$\|x\|_2^2=\int_0^\infty |x(t)|^2 dt=rac{1}{2\pi}\int_{-\infty}^\infty |X(i\omega)|^2 d\omega.$$

 $||x||_2 < \infty$ corresponds to bounded energy.

System Gain

A system *S* is a map between two signal spaces: y = S(u).

$$u \rightarrow S \rightarrow y$$

The gain of *S* is defined as $\gamma(S) = \sup_{u \in \mathcal{L}_2} \frac{\|y\|_2}{\|u\|_2} = \sup_{u \in \mathcal{L}_2} \frac{\|S(u)\|_2}{\|u\|_2}$

Example The gain of a static relation $y(t) = \alpha u(t)$ is

$$\gamma(lpha) = \sup_{u \in \mathcal{L}_2} rac{\|lpha u\|_2}{\|u\|_2} = \sup_{u \in \mathcal{L}_2} rac{|lpha| \|u\|_2}{\|u\|_2} = |lpha|$$

Example—Gain of a Stable Linear System

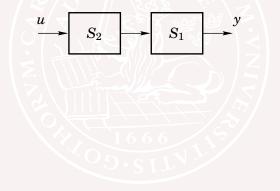
$$\gamma(G) = \sup_{u \in \mathcal{L}_2} \frac{\|Gu\|_2}{\|u\|_2} = \sup_{\omega \in (0,\infty)} |G(i\omega)|$$

Proof: Assume $|G(i\omega)| \le K$ for $\omega \in (0, \infty)$. Parseval's theorem gives

$$\begin{split} \|y\|_2^2 &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |Y(i\omega)|^2 d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 \|u\|_2^2 \end{split}$$

This proves that $\gamma(G) \leq K$. See [Khalil, Appendix C.10] for a proof of the equality.

2 minute exercise: Show that $\gamma(S_1S_2) \leq \gamma(S_1)\gamma(S_2)$.



Example—Gain of a Static Nonlinearity

$$|f(x)| \le K|x|, \qquad f(x^*) = Kx^*$$

$$u(t) \qquad f(\cdot) \qquad y(t) \qquad \qquad Kx \qquad f(x)$$

$$||y||_2^2 = \int_0^\infty f^2(u(t))dt \le \int_0^\infty K^2 u^2(t)dt = K^2 ||u||_2^2$$
for $u(t) = \begin{cases} x^* & 0 \le t \le 1 \\ 0 & t > 1 \end{cases}$ one has $||y||_2 = ||Ku||_2 = K||u||_2$

$$\implies \gamma(f) = \sup_{u \in \mathcal{L}_2} \frac{||y||_2}{||u||_2} = K.$$

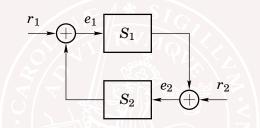
BIBO Stability

Definition

S is bounded-input bounded-output (BIBO) stable if $\gamma(S) < \infty$.

Example: If $\dot{x} = Ax$ is asymptotically stable then $G(s) = C(sI - A)^{-1}B + D$ is BIBO stable.

The Small Gain Theorem



Theorem Assume S_1 and S_2 are BIBO stable. If

 $\gamma(S_1)\gamma(S_2) < 1$

then the closed-loop map from (r_1, r_2) to (e_1, e_2) is BIBO stable.

"Proof" of the Small Gain Theorem

Existence of solution (e_1, e_2) for every (r_1, r_2) has to be verified separately. Then

 $||e_1||_2 \le ||r_1||_2 + \gamma(S_2)[||r_2||_2 + \gamma(S_1)||e_1||_2]$

gives

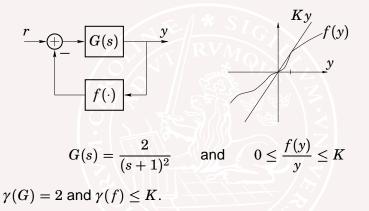
$$\|e_1\|_2 \le rac{\|r_1\|_2 + \gamma(S_2)\|r_2\|_2}{1 - \gamma(S_2)\gamma(S_1)}$$

 $\gamma(S_2)\gamma(S_1)<1,$ $\|r_1\|_2<\infty,$ $\|r_2\|_2<\infty$ give $\|e_1\|_2<\infty.$ Similarly we get

$$\|e_2\|_2 \le rac{\|r_2\|_2 + \gamma(S_1)\|r_1\|_2}{1 - \gamma(S_1)\gamma(S_2)}$$

so also e_2 is bounded.

Linear System with Static Nonlinear Feedback (1)



The small gain theorem gives that $K \in [0, 1/2)$ implies BIBO stability.

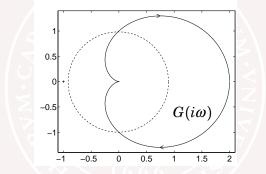
The Nyquist Theorem

Theorem

The closed loop system is stable iff the number of counter-clockwise encirclements of -1 by $G(\Omega)$ (note: ω increasing) equals the number of open loop unstable poles.

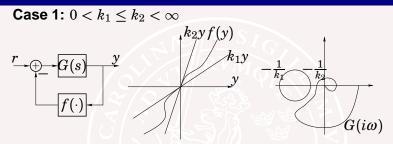
The Small Gain Theorem can be Conservative

Let f(y) = Ky for the previous system.



The Nyquist Theorem proves stability when $K \in [0, \infty)$. The Small Gain Theorem proves stability when $K \in [0, 1/2)$.

The Circle Criterion



Theorem Consider a feedback loop with y = Gu and u = -f(y) + r. Assume G(s) is stable and that

$$0 < k_1 \le \frac{f(y)}{y} \le k_2.$$

If the Nyquist curve of G(s) does not intersect or encircle the circle defined by the points $-1/k_1$ and $-1/k_2$, then the closed-loop system is BIBO stable from r to y.

Other cases

G: stable system

- $0 < k_1 < k_2$: Stay outside circle
- $0 = k_1 < k_2$: Stay to the right of the line Re $s = -1/k_2$
- $k_1 < 0 < k_2$: Stay inside the circle

Other cases: Multiply f and G with -1.

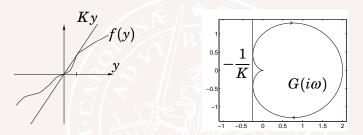
G: Unstable system

To be able to guarantee stability, k_1 and k_2 must have same sign (otherwise unstable for k = 0)

- 0 < k₁ < k₂: Encircle the circle *p* times counter-clockwise (if ω increasing)
- k₁ < k₂ < 0: Encircle the circle *p* times counter-clockwise (if ω increasing)

where *p*=number of open loop unstable poles

Linear System with Static Nonlinear Feedback (2)

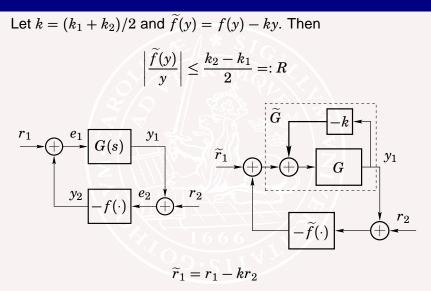


The "circle" is defined by $-1/k_1 = -\infty$ and $-1/k_2 = -1/K$.

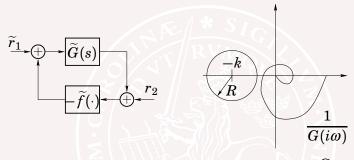
min Re
$$G(i\omega) = -1/4$$

so the Circle Criterion gives that if $K \in [0, 4)$ the system is BIBO stable.

Proof of the Circle Criterion



Proof of the Circle Criterion (cont'd)



SGT gives stability for $|\widetilde{G}(i\omega)|R < 1$ with $\widetilde{G} = \frac{G}{1+kG}$.

$$R < rac{1}{|\widetilde{G}(i\omega)|} = \left|rac{1}{G(i\omega)} + k
ight|$$

Transform this expression through $z \rightarrow 1/z$.

Lyapunov revisited

Original idea: "Energy is decreasing"

 $\dot{x} = f(x),$ $x(0) = x_0$ $V(x(T)) - V(x(0)) \le 0$ (+some other conditions on V)

New idea: "Increase in stored energy ≤ added energy"

$$\dot{x} = f(x, u), \qquad x(0) = x_0$$

$$y = h(x)$$

$$V(x(T)) - V(x(0)) \le \int_0^T \underbrace{\varphi(y, u)}_{\text{external power}} dt \qquad (1)$$

Motivation

Will assume the external power has the form $\phi(y, u) = y^T u$. Only interested in BIBO behavior. Note that

$$\exists V \ge 0$$
 with $V(x(0)) = 0$ and (1)

$$\int_0 y^T u \, dt \ge 0$$

cT

Motivated by this we make the following definition

Passive System

$$u \longrightarrow S \longrightarrow y$$

Definition The system S is **passive** from u to y if

$$\int_0^T y^T u \, dt \ \geq \ 0, \quad ext{for all } u ext{ and all } T > 0$$

and strictly passive from u to y if there $\exists \epsilon > 0$ such that

$$\int_0^T y^T u \, dt \ \ge \ \epsilon (|y|_T^2 + |u|_T^2), \quad ext{for all } u ext{ and all } T > 0$$

A Useful Notation

Define the scalar product

$$\langle y, u \rangle_T = \int_0^T y^T(t) u(t) dt$$

Cauchy-Schwarz inequality:

$$\langle y, u \rangle_T \leq |y|_T |u|_T$$

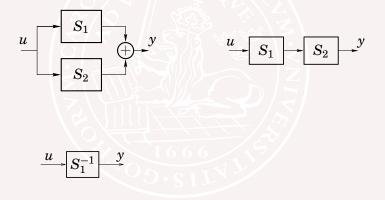
where $|y|_T = \sqrt{\langle y, y \rangle_T}$. Note that $|y|_{\infty} = ||y||_2$.

и

 \boldsymbol{S}

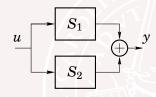
2 minute exercise

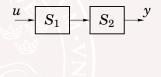
Assume S_1 and S_2 are passive. Are then parallel connection and series connection passive? How about inversion; S_1^{-1} ?



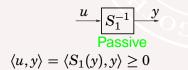
2 minute exercise

Assume S_1 and S_2 are passive. Are then parallel connection and series connection passive? How about inversion; S_1^{-1} ?

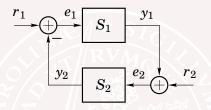




Passive $\langle u, y \rangle = \langle u, S_1(u) \rangle + \langle u, S_2(u) \rangle \ge 0$ Not passive E.g., $S_1 = S_2 = \frac{1}{s}$



Feedback of Passive Systems is Passive



If S_1 and S_2 are passive, then the closed-loop system from (r_1, r_2) to (y_1, y_2) is also passive.

Proof:
$$\langle y, r \rangle_T = \langle y_1, r_1 \rangle_T + \langle y_2, r_2 \rangle_T$$

= $\langle y_1, r_1 - y_2 \rangle_T + \langle y_2, r_2 + y_1 \rangle_T$
= $\langle y_1, e_1 \rangle_T + \langle y_2, e_2 \rangle_T \ge 0$
Hence, $\langle y, r \rangle_T \ge 0$ if $\langle y_1, e_1 \rangle_T \ge 0$ and $\langle y_2, e_2 \rangle_T \ge 0$

Passivity of Linear Systems

Theorem An asymptotically stable linear system G(s) is **passive** if and only if

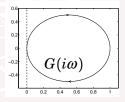
$$\operatorname{\mathsf{Re}} G(i\omega) \geq 0, \qquad \forall \omega > 0$$

It is strictly passive if and only if there exists $\epsilon > 0$ such that

 $\operatorname{\mathsf{Re}} G(i\omega) \ge \epsilon (1 + |G(i\omega)|^2), \quad \forall \omega > 0$

Example

 $G(s) = \frac{s+1}{s+2}$ is passive and strictly passive, $G(s) = \frac{1}{s}$ is passive but not strictly passive.

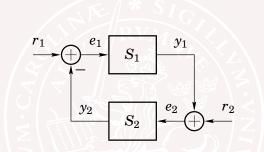


A Strictly Passive System Has Finite Gain

If S is strictly passive, then $\gamma(S) < \infty$.

Proof: Note that $||y||_2 = \lim_{T \to \infty} |y|_T$. $\epsilon(|y|_T^2 + |u|_T^2) \le \langle y, u \rangle_T \le |y|_T \cdot |u|_T \le ||y||_2 \cdot ||u||_2$ Hence, $\epsilon |y|_T^2 \le ||y||_2 \cdot ||u||_2$, so letting $T \to \infty$ gives $||y||_2 \le \frac{1}{\epsilon} ||u||_2$

The Passivity Theorem



Theorem If S_1 is strictly passive and S_2 is passive, then the closed-loop system is BIBO stable from r to y.

Proof of the Passivity Theorem

S_1 strictly passive and S_2 passive give $\epsilon \left(|y_1|_T^2 + |e_1|_T^2\right) \le \langle y_1, e_1 \rangle_T + \langle y_2, e_2 \rangle_T = \langle y, r \rangle_T$ Therefore

$$|y_1|_T^2 + \langle r_1 - y_2, r_1 - y_2 \rangle_T \le \frac{1}{\epsilon} \langle y, r \rangle_T$$

or

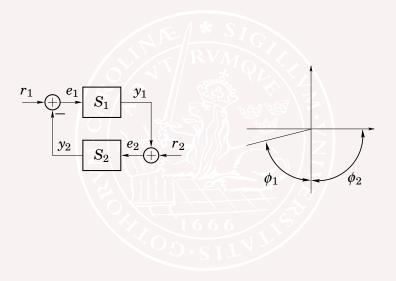
$$|y_1|_T^2 + |y_2|_T^2 - 2\langle y_2, r_2 \rangle_T + |r_1|_T^2 \le \frac{1}{\epsilon} \langle y, r \rangle_T$$

Finally

$$|y|_T^2 \le 2\langle y_2, r_2 \rangle_T + \frac{1}{\epsilon} \langle y, r \rangle_T \le \left(2 + \frac{1}{\epsilon}\right) |y|_T |r|_T$$

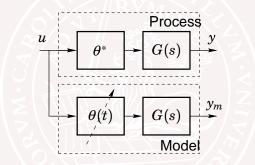
Letting $T \to \infty$ gives $||y||_2 \le C ||r||_2$ and the result follows

Passivity Theorem is a "Small Phase Theorem"



Example—Gain Adaptation

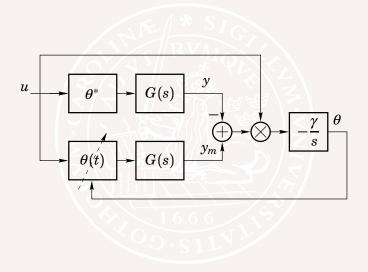
Applications in channel estimation in telecommunication, noise cancelling etc.



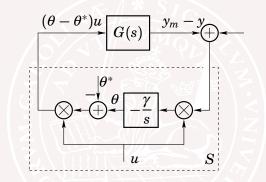
Adaptation law:

$$\frac{d\theta}{dt} = -\gamma u(t)[y_m(t) - y(t)], \qquad \gamma > 0.$$

Gain Adaptation—Closed-Loop System



Gain Adaptation is BIBO Stable



S is passive (Exercise 4.12), so the closed-loop system is BIBO stable if G(s) is strictly passive.

Simulation of Gain Adaptation

Let
$$G(s) = \frac{1}{s+1} + \epsilon$$
, $\gamma = 1$, $u = \sin t$, $\theta(0) = 0$ and $\gamma^* = 1$

Storage Function

Consider the nonlinear control system

$$\dot{x} = f(x, u), \qquad y = h(x)$$

A storage function is a C^1 function $V : \mathbb{R}^n \to \mathbb{R}$ such that

• V(0) = 0 and $V(x) \ge 0$, $\forall x \neq 0$

•
$$\dot{V}(x) \leq u^T y$$
, $\forall x, u$

Remark:

• V(T) represents the stored energy in the system • $\underbrace{V(x(T))}_{\text{stored energy at }t = T} \leq \underbrace{\int_{0}^{T} y(t)u(t)dt}_{\text{absorbed energy}} + \underbrace{V(x(0))}_{\text{stored energy at }t = 0}$, $\forall T > 0$

Storage Function and Passivity

Lemma: If there exists a storage function V for a system

$$\dot{x} = f(x, u), \qquad y = h(x)$$

with x(0) = 0, then the system is passive.

Proof: For all T > 0,

$$\langle y, u \rangle_T = \int_0^T y(t)u(t)dt \ge V(x(T)) - V(x(0)) = V(x(T)) \ge 0$$

Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function

Lyapunov idea: "Energy is decreasing"

 $\dot{V} \leq 0$

Passivity idea: "Increase in stored energy ≤ Added energy"

$$\dot{V} \leq u^T y$$

Example KYP Lemma

Consider an asymptotically stable linear system

$$\dot{x} = Ax + Bu, \ y = Cx$$

Assume there exists positive definite symmetric matrices P, Q such that

$$A^T P + PA = -Q$$
, and $B^T P = C$

Consider $V = 0.5x^T P x$. Then

$$\dot{V} = 0.5(\dot{x}^T P x + x^T P \dot{x}) = 0.5x^T (A^T P + PA)x + u^T B^T P x$$

= $-0.5x^T Q x + u^T y < u^T y, \ x \neq 0$ (2)

and hence the system is strictly passive. This fact is part of the Kalman-Yakubovich-Popov lemma.

Next Lecture

Describing functions (analysis of oscillations)