
Institutionen för

REGLERTEKNIK

Nonlinear Control and Servo Systems (FRTN05)

Exam - May 04, 2015 at 8.00 – 13.00

Points and grades

All answers must include a clear motivation. The total number of points is 25. The

maximum number of points is specified for each subproblem. Most subproblems

can be solved independently of each other. Preliminary grades:

3: 12− 16.5 points

4: 17− 21.5 points

5: 22− 25 points

Accepted aid

All course material, except for the exercises and solutions to old exams, may be

used as well as standard mathematical tables and authorized “Formelsamling i

reglerteknik”. Pocket calculator.

Results

Note!

In many cases the sub-problems can be solved independently of each other.
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Solutions to the exam in Nonlinear Control and Servo Systems (FRTN05)
2015–05–04

1. Consider the control system

ẍ − 2(ẋ)2 + x = u− 1 (1)

a. Write the system in first-order state-space form. (1 p)

b. Suppose u(t) = 0. Find and classify all equilibria and determine if they are
stable or asymptotically stable if possible. Discuss if the stability results

are global or local. (2 p)

c. Show that (1) is satisfied by the periodic solution x(t) = cos(t), u(t) =
cos(2t). (1 p)

d. Design a state-feedback controller u = u(x, ẋ) for (1) , such that the origin
of the closed loop system is globally asymptotically stable. (1 p)

Solution

a. Introduce x1 = x, x2 = ẋ then

ẋ1 = x2

ẋ2 = −x1 + 2x
2
2 + u− 1

b. Let ẋ1 = ẋ2 = 0 [ (x1, x2) = (−1, 0) is the only equilibrium. The lineari-
zation around this point is

A =

(

0 1

−1 4x2

)

(x0
1
,x0
2
)=(−1,0)

=

(

0 1

−1 0

)

, B =

(

0

1

)

The characteristic equation for the linearized system is s2+ 1 = 0 [ s = i
In general linearization only gives local behaviour of the nonlinear system,

but as the linaerized sytem has a center point we can not conclude even

local stability of the nonlinear system from this.

c. x = cos(t) [ ẋ = − sin(t) [ ẍ = − cos(t) By inserting this in the system
dynamics and using e.g., u = cos(2t) = cos2(t) − sin2(t) = 2 cos2(t) − 1 we
get

ẍ − 2(ẋ)2+ x = − cos(t) − 2 sin2(t) + cos(t) = 2+ cos2(t) − 2 = u− 1

which shows that the trajectory is a solution.

d. The simplest way is to cancel the constant term and the nonlinearity with

the control signal and introduce some linear feedback.

u = 1− 2(ẋ2)2− aẋ, a > 0 [ ẍ + aẋ + x = 0

As the resulting system is linear and time invariant with poles in the left

half plane for all a > 0 it is GAS.
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Figur 1 Block diagram for Problem 3.

2. Use Lyapunov theory to prove that the system

ẋ = −x3 + 4y2x

ẏ = −x2y− y3

has a globally asymptotically stable equilibrium. (2 p)

Solution

One choice is the Lyapunov function

V (x, y) = x2 +α y2.

Then

d

dt
V = 2(xẋ +α yẏ) = 2(−x4 + 4y2x2 −α y2x2 −α y4) < 0, (x, y) ,= 0.

Hence, a possible choice for α is α = 4. As V is positive and radially un-
bounded this proves global asymptotic stability of the system.

3. Consider the feedback loop in Figure 1. The linear system

G(s) =
1

(s+ 1)4

is connected with the static nonlinearity u(t) = f (e(t)), where f (e) = 4e3+
3π
8
pepe

a. Find the describing function for the nonlinearity f (e). (2 p)

b. What is the amplitude and frequency of a possible limit cycle? Will it be a

stable limit cycle according to the describing function method? (3 p)

Solution

a. The expression epep is an odd static nonlinearity

Nepep(A) =
b1 + ia1
A

, where

b1 =
1

π

∫ 2π

0
A sin(φ)pA sin(φ)p sin(φ)dφ =

8A2

3π

a1 =
1

π

∫ 2π

0
A sin(φ)pA sin(φ)p cos(φ)dφ = 0
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The expression e3 is an odd static nonlinearity, too

Ne3(A) =
b1 + ia1
A

, where

b1 =
1

π

∫ 2π

0
A3 sin(φ)4dφ =

3A3

4

a1 =
1

π

∫ 2π

0
A3 sin(φ)3 cos(φ)dφ = 0

Hence, Nepep(A) =
8A

3π
and Ne3(A) =

3

4
A2. The total describing function will

be N(A) = A+ 3A2.

b. Possible crossing points between G(iω ) and 1/N(A)must be on the negative
real axis. Thus we need the frequency ω ′ where

argG(iω ′) = −π .

Now argG(iω ) = −4arctanω which leads to the solution ω ′ = 1. Also
pG(iω ′)p = 1/4. This gives us the equation

1/N(A′) = 1/4

with the solution A′ = 1.

The limit cycle will be unstable.

4. Consider the linear system

ẋ = x + u, x(0) = x0.

Derive a control signal u(t) which takes the system to

x(1) = 1

while minimizing the control energy

∫ 1

0
u2(t)dt.

(3 p)

Solution

Define the Hamiltonian

H(x,u,λ ,n0) = n0u
2 + λx + λu.

The optimal control u∗(t) minimizes H :

Hu = 2n0u
∗ + λ = 0[ u∗(t) = −

λ(t)

2n0
.
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n0 must be greater than zero for the optimum to exist, so choose n0 = 1.
λ(t) satisfies

λ̇ = −HTx = −λ

λ(1) = µ.

Thus λ(t) = µe−t+1. To find µ we must use the boundary condition on x:

x(t) = x0e
t +

∫ t

0
et−τu∗(τ )dτ

and

x(1) = 1.

This gives

1 = x0e+

∫ 1

0
e1−τ (−

µe−τ+1

2
)dτ = x0e+

µe2

4
(e−2 − 1)

[ µ =
4(1− x0e)

1− e2
.

This gives the control

u∗(t) = −
2(1− x0e)e

−t+1

1− e2
.

5. An exponentially stable linear system G(s) is negative feedback intercon-
nected with a nonlinearity Ψ. The Nyquist diagram of the linear system is
shown in Figure 2. (Note: For your answer it is more important to clear-
ly mark in a figure where you get your data from than to have all digits

correct.)

a. What is the largest sector [−k, k], such that if −kx ≤ Ψ(x) ≤ kx, the small
gain theorem guarantees stability for the closed loop? (1 p)

b. What is the largest sector [0, β ], such that if 0 ≤ Ψ(x) ≤ β x, the circle
criterion guarantees stability for the closed loop? (1 p)

c. Find the largest sector [α , 0], where α < 0 such that if α x ≤ Ψ(x) ≤ 0, the
circle criterion guarantees stability for the closed loop. (1 p)

Solution

a. In this case we first want to find the maximum gain of the linear system

which equals the largest magnitude (’radius’) of the Nyquist curve. From
the Nyquist curve we see that this is about 2.5. The small gain theorem

then allows the sector to have k < 1
2.5
= 2
5
.

b. According to the circle criterion, in this case the closed loop will be stable

for the nonlinearity in the sector [0, β ] if the Nyquist curve stays to the
right of the vertical line −1/β . From the Nyquist curve we see that we can
take β ( 1/0.5 = 2.
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Figur 2 Nyquist diagram for linear system G(s) in Problem 5.

c. Multiply the nonlinearity and the system by -1 and apply the “ordinary”

circle criterion. This means that the mirrored Nyquist curve must stay to

the right of −1/(−α ). The mirrored Nyquist curve is to the right of the
vertical line −2.5, which means we can choose α = −1/2.5.

6. In this problem we are going to examine how to stabilize a system using

the control signal u = satk(v), i.e.,

u(v) =















k, v ≥ k;

v, −k ≤ v ≤ k;

−k, v ≤ −k;

where ∞ ≥ k > 0 and k = ∞ means u(v) = v for all v.

Your task is to choose the control signal v = v(x1, x2), such that the sy-
stem (2)

ẋ1 = x1x2

ẋ2 = u

u = satk(v)

(2)

is globally asymptotically stabilized.
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a. What is the smallest possible choice of k if one is using the Lyapunov can-

didate

Va = x
2
1 + x

2
2

to design a globally stabilized system. (2 p)

b. Now try with the Lyapunov function candidate

Vb = log(1+ x
2
1) + x

2
2

and choose v(x1, x2) so that the system is globally asymptotically stabilized.
What is the smallest possible k now? (2 p)

Solution

Both Va and Vb are positive definite with respect to (x1, x2) and radially
unbounded.

a.
d

dt
Va = 2 (x1 ẋ1 + x2 ẋ2) = 2(x

2
1 + u)x2

u would need to be −x21 − fodd(x2) to get the derivative
dVa
dt
negative

(semi-)definite. This can only be done with an unbounded u, which means
k has to be infinitely large.

b.
d

dt
Vb = 2

(

x1 ẋ1

1+ x21
+ x2 ẋ2

)

= 2

(

x21
1+ x21

+ u

)

x2

As 0 ≤
x21
1+ x21

≤ 1 we can always compensate for this term with u and by

choosing ”the rest of our available control signal” u as for instance −4sat(x2)

v = −
x21
1+ x21

− (k− 1)sat(x2) [ u = −
x21
1+ x21

− (k− 1)sat(x2)

However, this will leave us with d
dt
Vb = −(k− 1)sat(x2)x2 ≤ 0. If x2 = 0[

ẋ1 = 0, but with the chosen control law ẋ2 = 0 only if x1 = 0, so the origin
will be the only equilibrium if k > 1.

7. Consider the system

ẋ1 = −x2 + x
2
1 − sign(x1 − x2) + u

ẋ2 = −x2

a. Set u=0 and calculate the sliding surface. Also determine if the dynamics
on the sliding surface is stable. (2 p)

b. Design a continuous controller, u, that brings all solution to the switching

line x1 − x2 = 0. Does this control change the behaviour on the switching
line? (1 p)

Solution
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a. Set σ (x) = x1−x2 and use equivalent control to calculate the sliding surface.
Use ueq ∈ [−1 1]

ẋ1 = −x2 + x
2
1 − ueq

ẋ2 = −x2

Set σ̇ (x) = 0
σ̇ (x) = ẋ1 − ẋ2 = −x2 + x

2
1 − ueq+ x2 = 0 (3)

Thus ueq = x
2
1. Since ueq ∈ [−1 1] the sliding surface is between x1 = −1 and

x1 = 1. The dynamics on the sliding surface are σ̇ (x) = ẋ1− ẋ2 = 0 [ ẋ1 =
ẋ2 = −x2 = −x1 which means that the dynamics are ẋ1 = −x1, ẋ2 = −x2
which is asymptotically stable.

b. Choose Lyapunov function V (x) = σ 2/2 which gives

dV

dt
= (x1 − x2)(x

2
1 − sign(x1 − x2) + u) (4)

Choose u = −x21. This gives

dV

dt
= −2(x1 − x2)sign(x1 − x2) = −2px1 − x2p ≤ 0 (5)

This means that we will reach the surface σ (x) in finite time and we will
stay there. The dynamics on the sliding line with the chosen control is

ẋ1 = −x1

ẋ2 = −x2

which in this case is the same as without the continous feedback.
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