
Department of

AUTOMATIC CONTROL

Nonlinear Control and Servo Systems (FRTN05)

Exam - April 25, 2014, 1 pm – 6 pm

Points and grades

All answers must include a clear motivation. The total number of points is 25. The
maximum number of points is specified for each subproblem. Most subproblems can
be solved independently of each other.

Preliminary grades:

3: 12− 16 points

4: 16.5 − 20.5 points

5: 21− 25 points

Accepted aid

All course material, except for exercises and solutions to old exams, may be used as
well as standard mathematical tables and authorized “Formelsamling i reglerteknik”/”Collection
of Formulae”. Pocket calculator.

Note!

In many cases the sub-problems can be solved independently of each other.

Good Luck!
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1.

a. Prove that the origin is globally asymptotically stable for the two systems
below

I:
ẋ1 = −4x51 − 2x31x

4
2

ẋ2 = −5x72
II:

ẋ1 = x2

ẋ2 = −2x1 − x32

(2 p)

b. Consider the nonlinear system

ẋ1 = −x31 − x2x3

ẋ2 = −x52 + x3x
2
1

ẋ3 = x1x
2
2 + u

Design a feedback controller u(x) that renders the origin globally asymptoti-
cally stable. (2 p)

Solution

a. Along solutions of the first system, the candidate Lyapunov function

VI(x) =
1

2
(x21 + x22)

has derivative

V̇I(x) = x1(−4x51 − 2x31x
4
2) + x2(−5x72) = −4x61 − 2x41x

4
2 − 5x72 .

Since VI(0) = 0, VI(x) ≥ 0 for all x, V̇I(x) < 0 for all x 6= 0, and VI(x) is
radially unbounded, thus Lyapunov’s stability theorem implies that the origin
is a globally asymptotically stable equilibrium.

For the second system, consider the candidate Lyapunov function

VII(x) = x21 +
1

2
x22 .

Along the solutions, one has

V̇II(x) = 2x1x2 + x2(−2x1 − x32) = −x42 .

One has VII(0) = 0, VII(x) ≥ 0 for all x, V̇II(x) ≤ 0, and VII(x) is radially
unbounded. Since V̇II(x) = 0 for all x = (x1, 0), and not only for x = 0, one
cannot simply use Lyapunov’s stability theorem, but should apply LaSalle’s
theorem. For that, observe that ẋ2 = −2x1 when x2 = 0, so that the largest
invariant subset of E = {x : V̇II(x) = 0} = {(x1, 0)} is {0}. Then, the origin
is a globally asymptotically stable equilibrium.
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b. Let us choose the candidate Lyapunov function

V (x) =
1

2
(x21 + x22 + x23) ,

which is radially unbounded and has a minimum V (0) = 0 in the origin. Along
solutions of the system, its derivative is given by

V̇ (x) = x1(−x
3
1 − x2x3) + x2(−x

5
2 + x3x

2
1) + x3(x1x

2
2 + u)

= −x41 − x62 + x3u+ x3g(x)

where g(x) := −x1x2 + x21x2 + x1x
2
2. Then, choosing

u(x) = −x3 − g(x)

gives
V̇ (x) = h(x) , h(x) = −x41 − x62 − x23 .

Since h(x) < 0 for all x 6= 0, Lyapunov’s stability theorem allows one to prove
global asymptotic stability of the origin with this choice of the control u(x).
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2. Consider the sliding mode controlled system
[

ẋ1

ẋ2

]

=

[

η 1

4 0

][

x1

x2

]

+ u(x1, x2) ,

where η is a scalar parameter and

u(x1, x2) =

[

1

−2

]

, if x2 > 0 , u(x1, x2) =

[

−1

2

]

, if x2 < 0 .

a. Determine the sliding set. (1.5 p)

b. Find the sliding dynamics. (1.5 p)

c. For which values of the parameter η is x∗ = [0, 0]T a stable equilibrium for the
sliding dynamics? (1 p)

Solution

Let us rewrite the system as

ẋ =

{

f+(x) if x2 > 0

f−(x) if x2 < 0
,

with

f+(x) =

[

η 1

4 0

] [

x1

x2

]

+

[

1

−2

]

, f−(x) :=

[

η 1

4 0

][

x1

x2

]

+

[

−1

2

]

a. The sliding surface is {x2 = 0}, with normal vector [0, 1]T . In order to determine
the sliding set, we need to find the subset of the sliding surface where

[0, 1]f+(x) < 0 , [0, 1]f−(x) > 0 .

The above gives 4x1 − 2 < 0, and 4x1 + 2 > 0, i.e., −1/2 < x1 < 1/2. Hence,
the sliding set is {(x1, 0) : |x1| < 1/2}.

b. The sliding dynamics are given by the convex combination

ẋ = αf+(x) + (1− α)f−(x) ,

where α = α(x) is determined by the condition

[0, 1]
(

αf+(x) + (1− α)f−(x)
)

= 0 .

The above gives
4x1 − 2α+ 2(1− α) = 0 ,

that is α = x1 + 1/2. Substituting back, one finds that the sliding dynamics is
given by

ẋ = αf+(x) + (1− α)f−(x) =

[

η + 2 1

0 0

][

x1

x2

]

c. On the sliding set the dynamics are given by ẋ1 = (η + 2)x1. The origin is a
locally stable equilibrium if and only if η ≤ −2, and is an asymptotically stable
equilibrium if and only if η < −2.
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3. Consider the following controlled dynamical system

v̇(t) = −2v(t) + u(t) , v(0) = 0

describing the velocity of a particle affected by viscous friction and driven by
a controlled force u(t). One is interested in choosing u(t) so as to meet the
constraint

v(1) = 3 ,

while minimizing the acceleration cost

∫ 1

0
u2(t) dt .

a. Write down the Hamiltonian and the co-state equations. (1 p)

b. Solve the co-state equations. (1 p)

c. Find the optimal control u∗(t) (2 p)

Solution

a. The state is x = v, the running cost L(x, u) = u2, the time horizon tf = 1,
the final cost φ(x) = 0, and the dynamics ẋ = f(x, u) = −2x + u. Note that
we have a final time constraint ψ(v(tf )) = 0, and ψ(v) = v − 3. Then, we
need the more general version of the Pontryagin maximum principle, with the
Hamiltonian given by

H(x, u, λ, n0) = n0L(x, u) + λf(x, u) = n0u
2 + λ(−2x+ u)

where the multiplier n0 can take the values n0 = 0 or n0 = 1, and the co-state
equation reads

λ̇ = −
∂

∂x
H = 2λ

with final time condition

λ(1) = n0
∂

∂x
φ(x(1)) + µ

∂

∂x
ψ(x(1)) = µ ,

where µ ≥ 0.

b. The solution of the co-state equation

λ̇ = 2λ , λ(1) = µ ,

is given by
λ(t) = µe2(t−1) .

c. We should consider both the abnormal case n0 = 0 and the normal one n0 = 1,
separately.

For the abnormal case, observe that, since [n0, µ] 6= [0, 0], one has either
µ < 0, or µ > 0. For µ < 0, one gets λ(t) < 0, so that the Hamiltonian
H(x, u, λ(t), n0 = 0) = λ(t)(−2x + u) does not admit a minimum in u. (The
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infimum −∞ is achieved by taking arbitrarily negative u.) For µ > 0, one gets
λ(t) > 0, so that the Hamiltonian H(x, u, λ(t), n0 = 0) = λ(t)(−2x + u) is
minimized by taking u(t) = 0, for all t ∈ [0, 1]. However, choosing u(t) = 0 for
all t ∈ [0, 1] gives state equation

ẋ = 0 , x(0) = 0

whose solution x(t) = 0 for all t ∈ [0, 1] violates the constraint x(1) = 3.

Then, we are left with considering the normal case n0 = 1. Here the Hamilto-
nian at time t reads

H(x, u, λ(t), n0 = 1) = u2 + λ(t)(−2x+ u) .

The minimum of u2 + λ(t)(−2x + u) with respect to u is found by solving
∂
∂u

(u2 + λ(−2x+ u)) = 2u+ λ = 0, which gives us

u∗(t) = −
1

2
λ(t) = −

µ

2
e2(t−1) , t ∈ [0, 1] .

It remains to determine the value of µ. To get it, one needs to solve the state
equation

ẋ = −2x+ u = −2x−
µ

2
e2(t−1) ,

and impose the constraint x(1) = 3. The solution is

x(t) = −
µ

8
e2(t−1)

so that x(1) = µ/8 = 3 gives µ = 24.
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