
Lecture 9 — Nonlinear Control Design

Exact-linearization
Lyapunov-based design

Lab 2
Adaptive control
Backstepping

Hybrid / Piece-wise linear control
NOTE: Only overview!

Literature: [Khalil, ch.s 13, 14.2,14.3] and [Glad-Ljung,ch.17]
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Course Outline

Lecture 1-3 Modelling and basic phenomena
(linearization, phase plane, limit cycles)

Lecture 4-6 Analysis methods
(Lyapunov, circle criterion, describing functions)

Lecture 7-8 Common nonlinearities
(Saturation, friction, backlash, quantization)

Lecture 9-13 Design methods
(Lyapunov methods, Backstepping, Optimal control)

Lecture 14 Summary
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Exact Feedback Linearization

Idea:

Find state feedback u = u(x,v) so that the nonlinear system

ẋ = f (x) + �(x)u

turns into the linear system

ẋ = Ax + Bv

and then apply linear control design method.
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Exact linearization: example [one-link robot]

replacements
{

θτ

m

m{2θ̈ + dθ̇ +m{� cosθ = u

where d is the viscous damping.

The control u = τ is the applied torque

Design state feedback controller u = u(x) with x = (θ , θ̇ )T
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Introduce new control variable v and let

u = m{2v+ dθ̇ +m{� cosθ

Then
θ̈ = v

Choose e.g. a PD-controller

v = v(θ , θ̇) = kp(θ ref − θ ) − kdθ̇

This gives the closed-loop system:

θ̈ + kdθ̇ + kpθ = kpθ ref

Hence, u = m{2[kp(θ − θ ref) − kdθ̇ ] + dθ̇ +m{� cosθ
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Multi-link robot (n-joints)

x

y

z

ag

θ2

θ1

τ

General form

M(θ )θ̈ + C(θ , θ̇ )θ̇ + G(θ ) = u, θ ∈ Rn

Called fully actuated if n indep. actuators,

M n$ n inertia matrix, M = MT > 0
Cθ̇ n$ 1 vector of centrifugal and Coriolis forces
G n$ 1 vector of gravitation terms
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Computed torque

The computed torque
(also known as "Exact linearization", "dynamic inversion" , etc. )

u = M(θ )v+ C(θ , θ̇ )θ̇ + G(θ )

v = Kp(θ re f − θ ) − Kdθ̇ ,
(1)

gives closed-loop system

θ̈ + Kdθ̇ + Kpθ = KpθRe f

The matrices Kd and Kp can be chosen diagonal (no
cross-terms) and then this decouples into n independent
second-order equations.
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Lyapunov-Based Control Design Methods

ẋ = f (x,u)

Select Lyapunov function V (x) for stability verification

Find state feedback u = u(x) that makes V decreasing

Method depends on structure of f

Examples are energy shaping as in Lab 2 and, e.g.,
Back-stepping control design , which require certain f
discussed later.
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Lab 2 : Energy shaping for swing-up control

[movie]

Use Lyapunov-based design for swing-up control.
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Lab 2 : Energy shaping for swing-up control

Rough outline of method to get the pendulum to the upright
position

Find expression for total energy E of the pendulum
(potential energy + kinetic energy)

Let En be energy in upright position.

Look at deviation V = 1
2
(E − En)

2 ≥ 0

Find "swing strategy" of control torque u such that V̇ ≤ 0
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Example of Lyapunov-based design

Consider the nonlinear system

ẋ1 = −3x1 + 2x1x
2
2 + u (2)

ẋ2 = −x
3
2 − x2,

Find a nonlinear feedback control law which makes the origin
globally asymptotically stable.

We try the standard Lyapunov function candidate

V (x1, x2) =
1

2

(
x21 + x

2
2

)
,

which is radially unbounded, V (0, 0) = 0, and
V (x1, x2) > 0 ∀(x1, x2) ,= (0, 0).
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Example of Lyapunov-based design
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ẋ1 = −3x1 + 2x1x
2
2 + u (2)
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Example - cont’d

V̇ = ẋ1x1 + ẋ2x2 = (−3x1 + 2x1x
2
2 + u)x1 + (−x

3
2 − x2)x2

= −3x21 − x
2
2+ux1+2x

2
1x
2
2 − x

4
2

We would like to have

V̇ < 0 ∀(x1, x2) ,= (0, 0)

Inserting the control law, u = −2x1x22, we get

V̇ = −3x21−x
2
2−2x

2
1x
2
2 + 2x

2
1x
2
2︸ ︷︷ ︸

=0

−x42 = −3x
2
1−x

2
2−x

4
2 < 0, ∀x ,= 0
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Consider the system

ẋ1 = x
3
2

ẋ2 = u
(3)

Find a globally asymptotically stabilizing control law u = u(x).

Attempt 1: Try the standard Lyapunov function candidate

V (x1, x2) =
1

2

(
x21 + x

2
2

)
,

which is radially unbounded, V (0, 0) = 0, and
V (x1, x2) > 0 ∀(x1, x2) ,= (0, 0).

V̇ = ẋ1x1 + ẋ2x2 = x
3
2 ⋅ x1 + u ⋅ x2 = x2 (x

2
2x1 + u)︸ ︷︷ ︸
−x2

= −x22 ≤ 0

where we chose
u = −x2 − x

2
2x1
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Consider the system

ẋ1 = x
3
2

ẋ2 = u
(3)

Find a globally asymptotically stabilizing control law u = u(x).
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However V̇ = 0 as soon as x2 = 0 (Note: x1 could be anything).

According to LaSalle’s theorem the set
E = {xpV̇ = 0} = {(x1, 0)}∀x1

What is the largest invariant subset M ⊆ E?

Plugging in the control law u = −x2 − x22x1, we get

ẋ1 = x
3
2

ẋ2 = −x2 − x
2
2x1

(4)

Observe that if we start anywhere on the line {(x1, 0)} we will
stay in the same point as both ẋ1 = 0 and ẋ2 = 0, thus M=E
and we will not converge to the origin, but get stuck on the line
x2 = 0.

Draw phase-plot with e.g., pplane and study the behaviour.
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Attempt 2:

ẋ1 = x
3
2

ẋ2 = u
(5)

Try the Lyapunov function candidate

V (x1, x2) =
1

2
x21 +

1

4
x42,

which satisfies

V (0, 0) = 0

V (x1, x2) > 0, ∀(x1, x2) ,= (0, 0).
radially unbounded,
compute

V̇ = ẋ1x1 + ẋ2x
3
2 = x

3
2(x1 + u) = −x

4
2 ≤ 0

↑
if we use u = −x1 − x2
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With
u = −x1 − x2

we get the dynamics

ẋ1 = x
3
2

ẋ2 = −x1 − x2
(6)

V̇ = 0 if x2 = 0, thus

E = {xpV̇ = 0} = {(x1, 0)∀x1}

However, now the only possibility to stay on x2 = 0 is if x1 = 0, (
else ẋ2 ,= 0 and we will leave the line x2 = 0).
Thus, the largest invariant set

M = (0, 0)

According to the Invariant Set Theorem (LaSalle) all solutions
will end up in M and so the origin is GAS.

Draw phase-plot with e.g., pplane and study the behaviour.
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Adaptive Noise Cancellation Revisited

u b
s+a

b̂
s+â

x

x̂

x̃+
−

ẋ + ax = bu

˙̂x + âx̂ = b̂u

Introduce x̃ = x − x̂, ã = a− â, b̃ = b− b̂.

Want to design adaptation law so that x̃→ 0
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Let us try the Lyapunov function

V =
1

2
(x̃2 + γ aã

2 + γ bb̃
2)

V̇ = x̃ ˙̃x + γ aã ˙̃a+ γ bb̃
˙̃
b =

= x̃(−ax̃ − ãx̂ + b̃u) + γ aã ˙̃a+ γ bb̃
˙̃
b = −ax̃2

where the last equality follows if we choose

˙̃a = − ˙̂a =
1

γ a
x̃ x̂

˙̃
b = −

˙̂
b = −

1

γ b
x̃u

Invariant set: x̃ = 0.

This proves that x̃→ 0.

(The parameters ã and b̃ do not necessarily converge: u " 0.)
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Back-Stepping Control Design

We want to design a state feedback u = u(x) that stabilizes

ẋ1 = f (x1) + �(x1)x2

ẋ2 = u
(7)

at x = 0 with f (0) = 0.

Idea: See the system as a cascade connection. Design
controller first for the inner loop and then for the outer.

u x2 x1∫
�(x1)

f ()

∫
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Suppose the partial system

ẋ1 = f (x1) + �(x1)v̄

can be stabilized by v̄ = φ(x1) and there exists Lyapunov fcn
V1 = V1(x1) such that

V̇1(x1) =
dV1

dx1

(
f (x1) + �(x1)φ(x1)

)
≤ −W(x1)

for some positive definite function W.
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The Trick

Equation (7) can be rewritten as

ẋ1 = f (x1) + �(x1)φ(x1) + �(x1)[x2 − φ(x1)]

ẋ2 = u

−φ (x1)

u x2 x1∫
�(x1)

f + �φ

∫
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Introduce new state ζ = x2 − φ(x1) and control v = u− φ̇ :

ẋ1 = f (x1) + �(x1)φ(x1) + �(x1)ζ

ζ̇ = v

replacements

−φ̇ (x1)

u ζ x1∫
�(x1)

f + �φ

∫
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Consider V2(x1, x2) = V1(x1) + ζ 2/2. Then,

V̇2(x1, x2) =
dV1

dx1

(
f (x1) + �(x1)φ(x1)

)
+
dV1

dx1
�(x1)ζ + ζ v

≤ −W(x1) +
dV1

dx1
�(x1)ζ + ζ v

Choosing

v = −
dV1

dx1
�(x1) − kζ , k > 0

gives
V̇2(x1, x2) ≤ −W(x1) − kζ

2

Hence, x = 0 is asymptotically stable for (7) with control law
u(x) = φ̇(x) + v(x).

If V1 radially unbounded, then global stability.
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Back-Stepping Lemma

Lemma: Let z = (x1, . . . , xk−1)T and

ż = f (z) + �(z)xk

ẋk = u

Assume φ(0) = 0, f (0) = 0,

ż = f (z) + �(z)φ(z)

stable, and V (z) a Lyapunov fcn (with V̇ ≤ −W). Then,

u =
dφ

dz

(
f (z) + �(z)xk

)
−
dV

dz
�(z) − (xk − φ(z))

stabilizes x = 0 with V (z) + (xk − φ(z))2/2 being a Lyapunov
fcn.
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Strict Feedback Systems

Back-stepping Lemma can be applied to stabilize systems on
strict feedback form:

ẋ1 = f1(x1) + �1(x1)x2

ẋ2 = f2(x1, x2) + �2(x1, x2)x3

ẋ3 = f3(x1, x2, x3) + �3(x1, x2, x3)x4

...

ẋn = fn(x1, . . . , xn) + �n(x1, . . . , xn)u

where �k ,= 0

Note: x1, . . . , xk do not depend on xk+2, . . . , xn.
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Back-Stepping

Back-Stepping Lemma can be applied recursively to a system

ẋ = f (x) + �(x)u

on strict feedback form.

Back-stepping generates stabilizing feedbacks φ k(x1, . . . , xk)
(equal to u in Back-Stepping Lemma) and Lyapunov functions

Vk(x1, . . . , xk) = Vk−1(x1, . . . , xk−1) + [xk − φ k−1]
2/2

by “stepping back” from x1 to u

Back-stepping results in the final state feedback

u = φn(x1, . . . , xn)
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Example

Design back-stepping controller for

ẋ1 = x
2
1 + x2, ẋ2 = x3, ẋ3 = u

Step 0 Verify strict feedback form
Step 1 Consider first subsystem

ẋ1 = x
2
1 + φ1(x1), ẋ2 = u1

where φ1(x1) = −x
2
1
− x1 stabilizes the first equation. With

V1(x1) = x
2
1
/2, Back-Stepping Lemma gives

u1 = (−2x1 − 1)(x
2
1 + x2) − x1 − (x2 + x

2
1 + x1) = φ2(x1, x2)

V2 = x
2
1/2+ (x2 + x

2
1 + x1)

2/2
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Step 2 Applying Back-Stepping Lemma on

ẋ1 = x
2
1 + x2

ẋ2 = x3

ẋ3 = u

gives

u = u2 =
dφ2
dz

(
f (z) + �(z)xn

)
−
dV2

dz
�(z) − (xn − φ2(z))

=
�φ2
�x1

(x21 + x2) +
�φ2
�x2
x3 −

�V2
�x2

− (x3 − φ2(x1, x2))

which globally stabilizes the system.
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Hybrid Control

Control problems where there is a mixture between continuous
states and discrete state variables.

Continuous states: position, velocity, temperature, pressure

Discrete states: on/off variables, controller modes, loss of
actuators, loss of sensors, relays, etc

Discontinuous differential equations

Much active field, much left to understand
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Example of hybrid control

Control law that switches between different modes, e.g.
between

Time optimal control – during large set point changes

Linear control – close to set point
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Aircraft Example

2

K1

+

+

K

-

-n z

a lim

e1

e2

a

2d

1

q, a

d

max

r

d

(Branicky, 1993)
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Phase Plane

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

No common quadratic Lyapunov function exists.

A1 =

[
−5 −4
−1 −2

]
A2 =

[
−2 −4
20 −2

]
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Piecewise quadratic Lyapunov functions

V (x) =

{
x∗Px if x1 < 0
x∗Px +ηx2

1
if x1 ≥ 0

The matrix inequalities

A∗
1P+ PA1 < 0

P > 0

A∗
2(P +ηE∗E) + (P +ηE∗E)A2 < 0

P+ηE∗E > 0

with E = [1 0], have the solution P = diag{1, 3}, η = 7.
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Flower Example

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

, −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3
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Next Lecture

Optimization.

Read chapter 18 in [Glad & Ljung] for preparation.
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