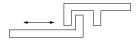
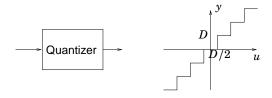
Lecture 8 — Backlash and Quantization

Today's Goal:

► To know models and compensation methods for backlash



Be able to analyze the effect of quantization errors

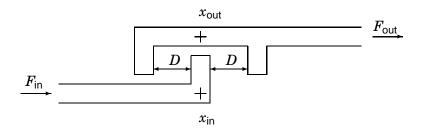


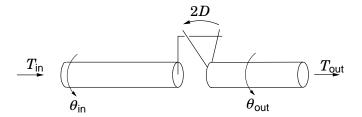
Material

Lecture slides

Note: We are using analysis methods from previous lectures (describing functions, small gain theorem etc.), and these have references to the course book(s).

Linear and Angular Backlash





Example: Parallel Kinematic Robot

Gantry-Tau robot: Need backlash-free gearboxes for high precision

EU-project: SMErobot Mwww.smerobot.org

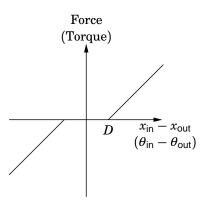
Backlash

Backlash (glapp) is

- present in most mechanical and hydraulic systems
- increasing with wear
- bad for control performance
- may cause oscillations

Note: A gear box without any backlash will not work if temperature rises

Dead-zone Model

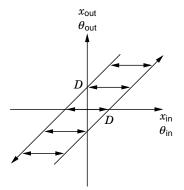


- ▶ Often easier to use model of the form $x_{in}(\cdot) \rightarrow x_{out}(\cdot)$
- ▶ Uses implicit assumption: $F_{\text{out}} = F_{\text{in}}, T_{\text{out}} = T_{\text{in}}$. Can be **wrong**, especially when "no contact".

The Standard Model

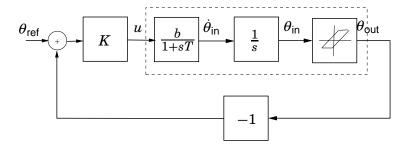
Assume instead

- $\dot{x}_{out} = \dot{x}_{in}$ when "in contact"
- $\dot{x}_{out} = 0$ when "no contact"
- No model of forces or torques needed/used



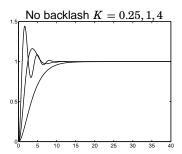
Servo motor with Backlash

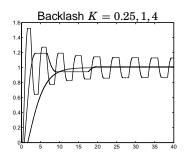
P-control of servo motor



How does the values of *K* and *D* affect the behavior?

Effects of Backlash

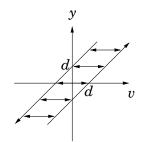


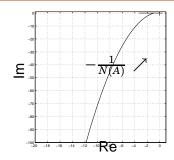


Oscillations for K=4 but not for K=0.25 or K=1. Why?

Limit cycle becomes smaller if D is made smaller, but it never disappears

Describing Function for a Backlash





If A > D then

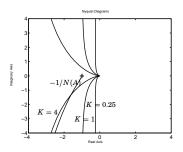
$$\begin{split} N(A) &= \frac{b_1 + ia_1}{A} \quad \text{with} \quad a_1 = \frac{4d}{\pi} \left(\frac{d}{A} - 1 \right) \quad \text{and} \\ b_1 &= \frac{A}{\pi} \left[\frac{\pi}{2} - \arcsin \left(\frac{2d}{A} - 1 \right) - \left(\frac{2d}{A} - 1 \right) \sqrt{1 - \left(\frac{2d}{A} - 1 \right)^2} \right] \\ \text{else } N(A) &= 0. \end{split}$$

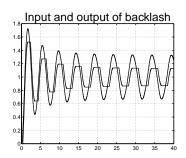
1 minute exercise

Study the plot for the describing function for the backlash on the previous slide.

Where does the function $-\frac{1}{N(A)}$ end for $A \to \infty$ and why?

Describing Function Analysis



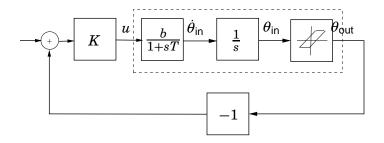


- For K=4, D=0.2: intersection between $G(j\omega)$ and -1/N(A) occurs for $A=0.33, \omega=1.24$
- Simulation: A = 0.33, $\omega = 2\pi/5.0 = 1.26$ Describing function predicts oscillation well!

Limit cycles?

The describing function method is only approximate.

Can one determine conditions that **guarantee** stability?

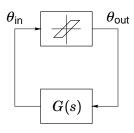


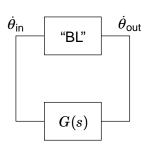
Note: θ_{in} and θ_{out} will not converge to zero

Idea: Consider instead $\dot{\theta}_{\rm in}$ and $\dot{\theta}_{\rm out}$

Backlash Limit Cycles

Rewrite the system as





Note that the block "BL" satisfies

$$\dot{\theta}_{\text{out}} = \left\{ egin{array}{ll} \dot{\theta}_{\text{in}} & \text{in contact} \\ 0 & \text{otherwise} \end{array}
ight.$$

Analysis by small gain theorem

Backlash block has gain ≤ 1 (from $\dot{\theta}_{\text{in}}$ to $\dot{\theta}_{\text{out}}$)

Hence closed loop is stable if G(s) asymptotically stable and $|G(i\omega)| < 1$ for all ω

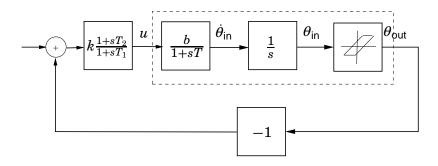
Backlash compensation

- Mechanical solutions
- Dead-zone
- Linear controller design
- Backlash inverse

Linear Controller Design

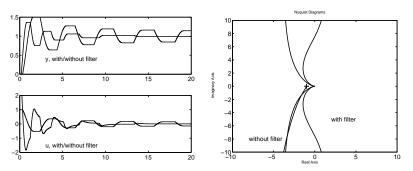
Introduce phase lead **to avoid** the -1/N(A) curve:

Instead of only a P-controller we choose $K(s) = k \frac{1+sT_2}{1+sT_1}$



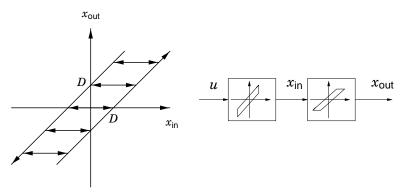
Controller
$$K(s) = k \frac{1+sT_2}{1+sT_1}$$

Simulation with $T_1 = 0.5, T_2 = 2.0$



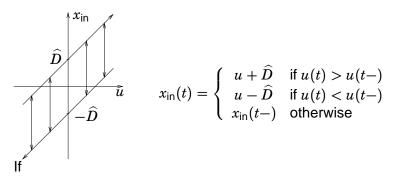
No limit cycle, oscillation removed!

Backlash Inverse



Idea: Let x_{in} jump $\pm 2D$ when \dot{x}_{out} should change sign. Works if the backlash is directly on the system input!

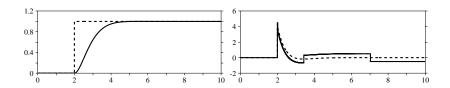
Backlash Inverse



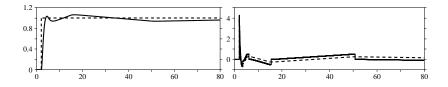
- $\widehat{D} = D$ then $x_{\text{out}}(t) = u(t)$ (perfect compensation)
- $ightharpoonup \widehat{D} < D$: Under-compensation (decreased backlash)
- $ightharpoonup \widehat{D} > D$: Over-compensation, often gives oscillations

Example-Perfect compensation

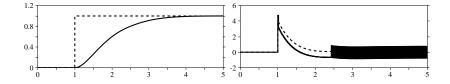
Motor with backlash on input, PD-controller



Example-Under compensation



Example-Over compensation



Backlash-More advanced models

Warning: More detailed models needed sometimes
Model what happens when contact is attained
Model external forces that influence the backlash
Model mass/moment of inertia of the backlash.

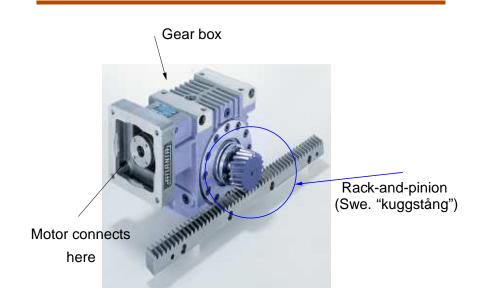
Example: Parallel Kinematic Robot

Gantry-Tau robot:

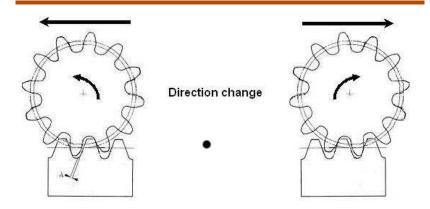
Need backlash-free gearboxes for very high precision

EU-project: SMErobotTM

"Rotational to Linear motion"



Backlash in gearbox and rails



Remedy:

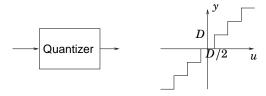
Use two motors, possible to motors in opposite directions: One motor can act as spring and brake to "reduce" backlash. Need measurements on both motor and arm-side.

Backlash compensation



From master thesis by B. Brochier, *Control of a Gantry-Tau Structure, LTH, 2006* See also master theses by j. Schiffer and L. Halt, 2009.

Quantization



How accurate should the converters be? (8-14 bits?)

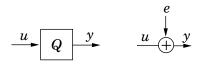
What precision is needed in computations? (8-64 bits?)

- Quantization in A/D and D/A converters
- Quantization of parameters
- Roundoff, overflow, underflow in operations
 NOTE: Compare with (different) limits for "quantizer/dead-zone relay" in Lecture 6.

Linear Model of Quantization

Model the quantization error as a stochastic signal e independent of u with rectangular distribution over the quantization size.

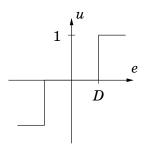
Works if quantization level is small compared to the variations in \boldsymbol{u}

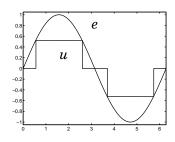


Rectangular noise distribution over $[-\frac{D}{2}, \frac{D}{2}]$ has the variance

$$Var(e) = \int_{-\infty}^{+\infty} e^2 f_e \, de = \int_{-D/2}^{D/2} e^2 \frac{1}{D} de = \frac{D^2}{12}$$

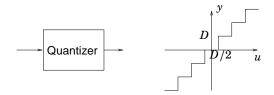
Describing Function for Deadzone Relay





$$N(A) = \frac{4}{\pi A} \sqrt{1 - D^2/A^2}$$
 for $A > D$ and zero otherwise

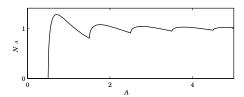
Describing Function for Quantizer



$$N(A) = \left\{ egin{array}{ll} 0 & A < rac{D}{2} \ rac{4D}{\pi A} \sum\limits_{k=1}^{n} \sqrt{1 - \left(rac{2k-1}{2A}D
ight)^2} & rac{2n-1}{2}D < A < rac{2n+1}{2}D \end{array}
ight.$$

(See exercise)

Describing Function for Quantizer



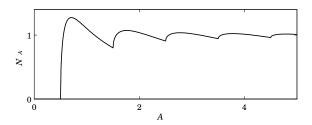
The maximum value is $4/\pi \approx 1.27$ for $A \approx 0.71D$.

Predicts limit cycle if Nyquist curve intersects negative real axis to the left of $-\pi/4 \approx -0.79$.

Should design for gain margin > 1/0.79 = 1.27!

Note that reducing D only reduces the size of the limit oscillation, the oscillation does not vanish completely.

5 minute exercise



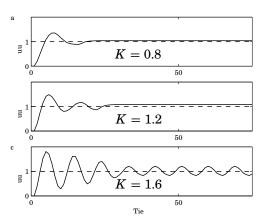
How does the shape of the describing function relate to the number of possible limit cycles and their stability.

What if the Nyquist plot

- ▶ intersects the negative real axis at −0.80?
- ▶ intersects the negative real axis at −1?
- ▶ intersects the negative real axis at −2?

Example – Motor with P-controller.

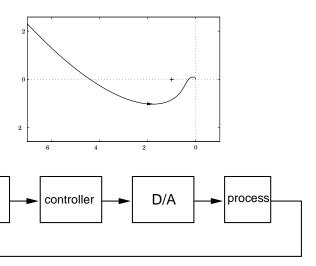
Roundoff at input, D=0.2. Nyquist curve intersects at -0.5K. Hence stable for K<2 without quantization. Stable oscillation predicted for K>2/1.27=1.57.



Example – Double integrator with 2nd order controller

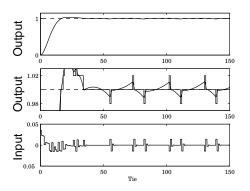
Nyquist curve

A/D



Quantization at A/D converter

Double integrator with 2nd order controller, D = 0.02

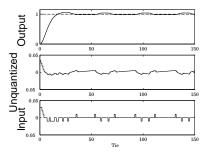


Describing function: $A_y \approx D/2 = 0.01$, period T = 39

Simulation: $A_{\nu}=0.01$ and T=28

Quantization at D/A converter

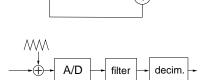
Double integrator with 2nd order controller, D = 0.01



Describing function: $A_u \approx D/2 = 0.005$, period T = 39 Simulation: $A_u = 0.005$ and T = 39 Better prediction, since more sinusoidal signals

Quantization Compensation

- Use improved converters, (small quantization errors/larger word length)
- ► Linear design, avoid unstable controller, ensure gain margin>1.3
- Use the tracking idea from anti-windup to improve D/A converter
- Use analog dither, oversampling and digital low-pass filter to improve accuracy of A/D converter



Digital

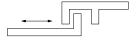
controller

Analog

D/A

Today's Goal

▶ To know models and compensation methods for backlash



Be able to analyze the effect of quantization errors

