Lecture 7: Anti-windup and friction compensation

- Compensation for saturations (anti-windup)
- Friction models
- Friction compensation

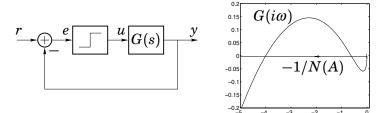
Material

Lecture slides

Course Outline

Lecture 1-3	Modelling and basic phenomena (linearization, phase plane, limit cycles)
Lecture 2-6	Analysis methods (Lyapunov, circle criterion, describing functions)
Lecture 7-8	Common nonlinearities (Saturation, friction, backlash, quantization)
Lecture 9-13	Design methods (Lyapunov methods, Backstepping, Optimal control)
Lecture 14	Summary

Last lecture: Stable periodic solution

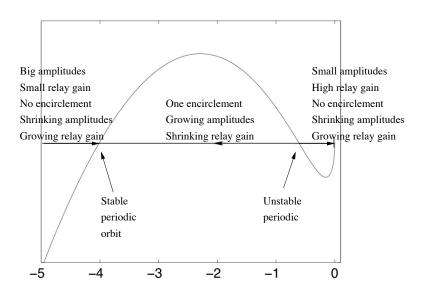


$$G(s) = \frac{(s+10)^2}{(s+1)^3}$$
 with feedback $u = -\operatorname{sgn} y$

gives one stable and one unstable limit cycle. The left most intersection corresponds to the stable one.

Periodic Solutions in Relay System

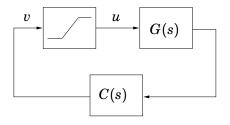
The relay gain N(A) is higher for small A:



Today's Goal

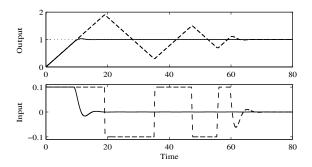
- To be able to design and analyze antiwindup schemes for
 - ► PID
 - state-space systems
 - and Kalman filters (observers)
- To understand common models of friction
- To design and analyze friction compensation schemes

Windup – The Problem



The feedback path is broken when u saturates The controller C(s) is a dynamic system Problems when controller is unstable (or stable but not AS) Example: I-part in PID-controller

Example-Windup in PID Controller

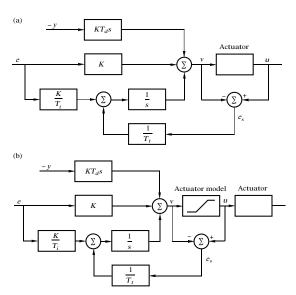


Dashed line: ordinary PID-controller

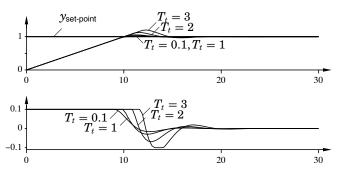
Solid line: PID-controller with anti-windup

Anti-windup for PID-Controller ("Tracking")

Anti-windup (a) with actuator output available and (b) without



Choice of Tracking Time T_t

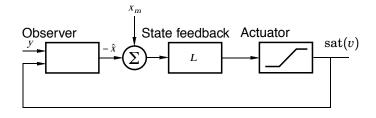


With very small T_t (large gain $1/T_t$), spurious errors can saturate the output, which leads to accidental reset of the integrator. Too large T_t gives too slow reaction (little effect).

The tracking time T_t is the design parameter of the anti-windup.

Common choices: $T_t = T_i$ or $T_t = \sqrt{T_i T_d}$.

State feedback with Observer



$$\dot{x} = A\hat{x} + B \operatorname{sat}(v) + K(y - C\hat{x})$$

$$v = L(x_m - \hat{x})$$

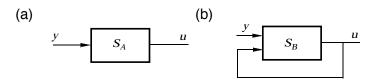
 \hat{x} is estimate of process state, x_m desired (model) state. Need model of saturation if $\mathrm{sat}(v)$ is not measurable

Antiwindup – General State-Space Controller

State-space controller:

$$\dot{x}_c(t) = Fx_c(t) + Gy(t)
u(t) = Cx_c(t) + Dy(t)$$

Windup possible if F is unstable and u saturates.



Idea:

Rewrite representation of control law from (a) to (b) such that:

- (a) and (b) have same input-output relation
- (b) behaves better when feedback loop is broken, if S_B stable

Antiwindup – General State-Space Controller

Mimic the observer-based controller:

$$\dot{x}_c = Fx_c + Gy + K \underbrace{(u - Cx_c - Dy)}_{=0}$$

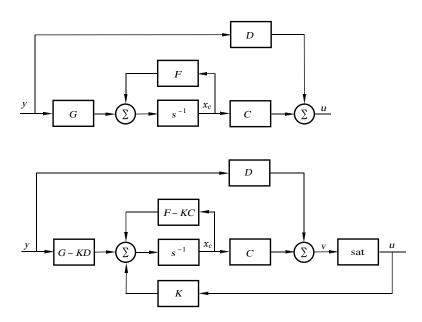
$$= (F - KC)x_c + (G - KD)y + Ku$$

$$= F_0x_c + G_0y + Ku$$

Design so that $F_0 = F - KC$ has desired stable eigenvalues Then use controller

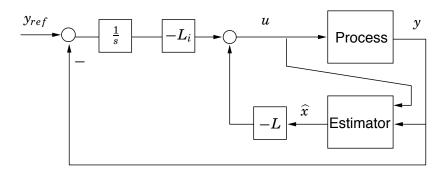
$$\dot{x}_c = F_0 x_c + G_0 y + K u
u = \text{sat} (C x_c + D y)$$

State-space controller without and with anti-windup:



5 Minute Exercise

How would you do antiwindup for the following state-feedback controller with observer and integral action?



Saturation

Optimal control theory (later)

Multi-loop Anti-windup (Cascaded systems):

Difficult problem, several suggested solutions

Turn off integrator in outer loop when inner loop saturates

Friction

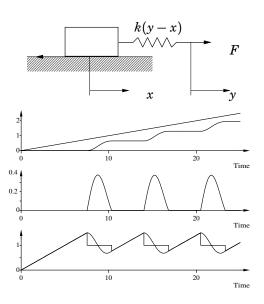
Almost is present almost everywhere

- Often bad
 - Friction in valves and mechanical constructions
- Sometimes good
 - Friction in brakes
- Sometimes too small
 - Earthquakes

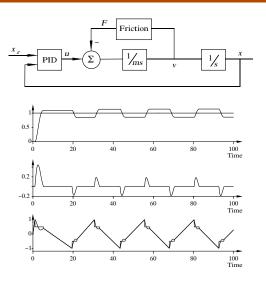
Problems

- How to model friction
- How to compensate for friction

Stick-slip Motion



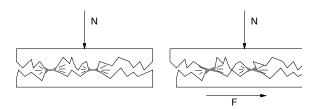
Position Control of Servo with Friction – Hunting

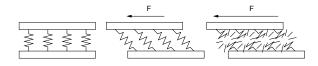


3 Minute Exercise

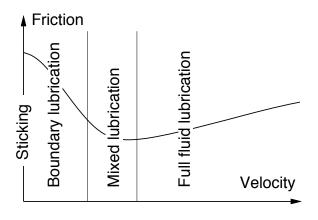
What are the signals in the previous plots? What model of friction has been used in the simulation?

Friction





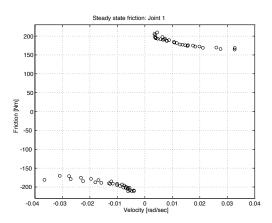
Lubrication Regimes



Hard to get good model at v = 0

Stribeck Effect

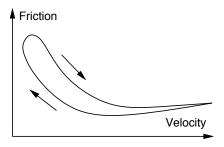
For low velocity: friction increases with decreasing velocity Stribeck (1902)



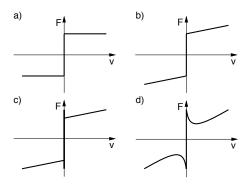
Frictional Lag

Dynamics are important also outside sticking regime Hess and Soom (1990)

Experiment with unidirectional motion $v(t) = v_0 + a \sin(\omega t)$ Hysteresis effect!



Classical Friction Models



c)
$$F(t) = \left\{ \begin{array}{ll} F_c \ \text{sign} \ v(t) + F_v v(t) & v(t) \neq 0 \\ \max(\min(F_e(t), F_s), -F_s) & v(t) = 0 \end{array} \right.$$

$$F_e(t) = \text{ external applied force }, F_c, F_v, F_s \text{ constants}$$

Advanced Friction Models

See PhD-thesis by Henrik Olsson

- Karnopp model
- Armstrong's seven parameter model
- Dahl model
- Bristle model
- Reset integrator model
- Bliman and Sorine
- Wit-Olsson-Åström

Demands on a model

To be useful for control the model should be

- sufficiently accurate,
- suitable for simulation,
- simple, few parameters to determine.
- physical interpretations, insight

Pick the simplest model that does the job! If no stiction occurs the v=0-models are not needed.

Friction Compensation

- Lubrication
- Integral action (beware!)
- Dither
- Non-model based control
- Model based friction compensation
- Adaptive friction compensation

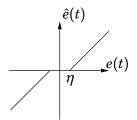
Integral Action

- The integral action compensates for any external disturbance
- Good if friction force changes slowly ($v \approx \text{constant}$).
- \bullet To get fast action when friction changes one must use much integral action (small T_i)
- Gives phase lag, may cause stability problems etc

Deadzone - Modified Integral Action

Modify integral part to $I = rac{K}{T_i} \int_0^t \hat{e}(t) d au$

where input to integrator
$$\hat{e} = \left\{ \begin{array}{ll} e(t) - \eta & e(t) > \eta \\ 0 & |e(t)| < \eta \\ e(t) + \eta & e(t) < -\eta \end{array} \right.$$

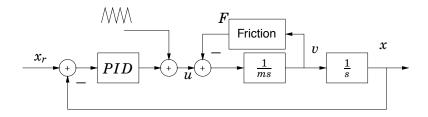


Advantage: Avoid that small static error introduces limit cycle

Disadvantage: Must accept small error (will not go to zero)

Mechanical Vibrator–Dither

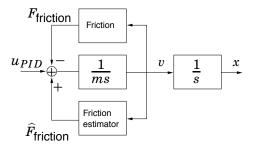
Avoids sticking at v=0 where there usually is high friction by adding high-frequency mechanical vibration (dither)



Cf., mechanical maze puzzle (labyrintspel)

Adaptive Friction Compensation

Coulomb Friction $F = a \operatorname{sgn}(v)$



Assumption: v measurable.

Friction estimator:

$$\dot{z} = ku_{PID}\operatorname{sgn}(v)$$
 $\hat{a} = z - km|v|$
 $\hat{F}_{\mathsf{friction}} = \hat{a}\operatorname{sgn}(v)$

Result: $e = a - \hat{a} \rightarrow 0$ as $t \rightarrow \infty$, since

$$\frac{de}{dt} = -\frac{d\hat{a}}{dt} = -\frac{dz}{dt} + km\frac{d}{dt}|v|$$

$$= -ku_{PID}\operatorname{sgn}(v) + km\dot{v}\operatorname{sgn}(v)$$

$$= -k\operatorname{sgn}(v)(u_{PID} - m\hat{v})$$

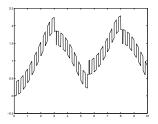
$$= -k\operatorname{sgn}(v)(F - \hat{F})$$

$$= -k(a - \hat{a})$$

$$= -ke$$

Remark: Careful with $\frac{d}{dt}|v|$ at v=0.

The Knocker
Combines Coulomb compensation and square wave dither



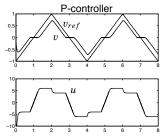
Tore Hägglund, Innovation Cup winner + patent 1997

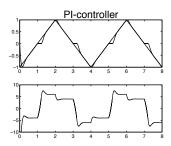
Example–Friction Compensation

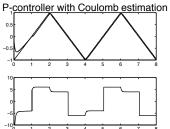
Velocity control with

- a) P-controller
- b) PI-controller
- c) P + Coulomb estimation

Results







Next Lecture

- Backlash
- Quantization