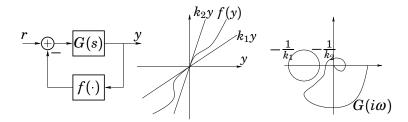
Lecture 5 — Input-output stability

or

"How to make a circle out of the point -1 + 0i, and different ways to stay away from it ..."



Course Outline

Lecture 1-3	Modelling and basic phenomena (linearization, phase plane, limit cycles)
Lecture 4-6	Analysis methods (Lyapunov, circle criterion, describing functions)
Lecture 7-8	Common nonlinearities (Saturation, friction, backlash, quantization)
Lecture 9-13	Design methods (Lyapunov methods, Backstepping, Optimal control)
Lecture 14	Summary

Today's Goal

To understand

- signal norms
- system gain
- bounded input bounded output (BIBO) stability

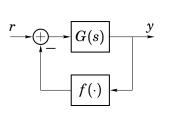
To be able to analyze stability using

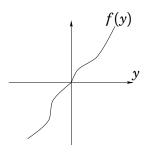
- the Small Gain Theorem.
- the Circle Criterion,
- Passivity

Material

- ► [Glad & Ljung]: Ch 1.5-1.6, 12.3 [Khalil]: Ch 5–7.1
- lecture slides

History



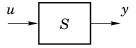


For what G(s) and $f(\cdot)$ is the closed-loop system stable?

- Lur'e and Postnikov's problem (1944)
- Aizerman's conjecture (1949) (False!)
- Kalman's conjecture (1957) (False!)
- ► Solution by Popov (1960) (Led to the Circle Criterion)

Gain

Idea: Generalize static gain to nonlinear dynamical systems



The gain γ of S measures the largest amplification from u to y Here S can be a constant, a matrix, a linear time-invariant system, a nonlinear system, etc

Question: How should we measure the size of u and y?

Norms

A norm $\|\cdot\|$ measures size.

A **norm** is a function from a space Ω to \mathbf{R}^+ , such that for all $x,y\in\Omega$

- $\|x\| \ge 0 \quad \text{and} \quad \|x\| = 0 \Leftrightarrow x = 0$
- $||x + y|| \le ||x|| + ||y||$
- ▶ $\|\alpha x\| = |\alpha| \cdot \|x\|$, for all $\alpha \in \mathbf{R}$

Examples

Euclidean norm: $||x|| = \sqrt{x_1^2 + \cdots + x_n^2}$ Max norm: $||x|| = \max\{|x_1|, \dots, |x_n|\}$

Signal Norms

A signal x(t) is a function from \mathbf{R}^+ to \mathbf{R}^d . A signal norm is a way to measure the size of x(t).

Examples

2-norm (energy norm): $||x||_2 = \sqrt{\int_0^\infty |x(t)|^2} dt$ sup-norm: $||x||_\infty = \sup_{t \in \mathbf{R}^+} |x(t)|$

The space of signals with $||x||_2 < \infty$ is denoted \mathcal{L}_2 .

Parseval's Theorem

Theorem If $x, y \in \mathcal{L}_2$ have the Fourier transforms

$$X(i\omega) = \int_0^\infty e^{-i\omega t} x(t) dt, \qquad Y(i\omega) = \int_0^\infty e^{-i\omega t} y(t) dt,$$

then

$$\int_0^\infty y^T(t)x(t)dt = rac{1}{2\pi}\int_{-\infty}^\infty Y^*(i\omega)X(i\omega)d\omega.$$

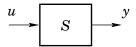
In particular

$$||x||_2^2 = \int_0^\infty |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^\infty |X(i\omega)|^2 d\omega.$$

 $||x||_2 < \infty$ corresponds to bounded energy.

System Gain

A system S is a map between two signal spaces: y = S(u).



The gain of
$$S$$
 is defined as $\gamma(S) = \sup_{u \in \mathcal{L}_2} \frac{\|y\|_2}{\|u\|_2} = \sup_{u \in \mathcal{L}_2} \frac{\|S(u)\|_2}{\|u\|_2}$

Example The gain of a static relation $y(t) = \alpha u(t)$ is

$$\gamma(\alpha) = \sup_{u \in \mathcal{L}_2} \frac{\|\alpha u\|_2}{\|u\|_2} = \sup_{u \in \mathcal{L}_2} \frac{|\alpha| \|u\|_2}{\|u\|_2} = |\alpha|$$

Example—Gain of a Stable Linear System

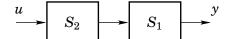
$$\gamma(G) = \sup_{u \in \mathcal{L}_2} rac{\|Gu\|_2}{\|u\|_2} = \sup_{\omega \in (0,\infty)} |G(i\omega)|$$

Proof: Assume $|G(i\omega)| \leq K$ for $\omega \in (0,\infty)$. Parseval's theorem gives

$$\begin{aligned} \|y\|_2^2 &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |Y(i\omega)|^2 d\omega \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 |U(i\omega)|^2 d\omega \le K^2 \|u\|_2^2 \end{aligned}$$

This proves that $\gamma(G) \leq K$. See [Khalil, Appendix C.10] for a proof of the equality.

2 minute exercise: Show that $\gamma(S_1S_2) \leq \gamma(S_1)\gamma(S_2)$.



Example—Gain of a Static Nonlinearity

$$|f(x)| \le K|x|, \qquad f(x^*) = Kx^*$$

$$u(t) \qquad \qquad Kx$$

$$f(x) \qquad \qquad Kx$$

$$x^* \qquad \qquad x$$

$$\begin{split} \|y\|_2^2 &= \int_0^\infty f^2 \big(u(t) \big) dt \leq \int_0^\infty K^2 u^2(t) dt = K^2 \|u\|_2^2 \\ u(t) &= x^*, \, t \in (0, \infty) \text{ gives equality} \Rightarrow \\ \gamma(f) &= \sup_{u \in \mathcal{L}_2} \frac{\|y\|_2}{\|u\|_2} = K. \end{split}$$

BIBO Stability

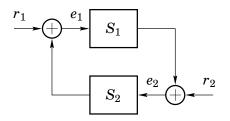
$$y \longrightarrow S \longrightarrow \gamma(S) = \sup_{u \in \mathcal{L}_2} \frac{\|y\|_2}{\|u\|_2}$$

Definition

S is bounded-input bounded-output (BIBO) stable if $\gamma(S) < \infty$.

Example: If $\dot{x} = Ax$ is asymptotically stable then $G(s) = C(sI - A)^{-1}B + D$ is BIBO stable.

The Small Gain Theorem



Theorem

Assume S_1 and S_2 are BIBO stable. If

$$\gamma(S_1)\gamma(S_2) < 1$$

then the closed-loop map from (r_1, r_2) to (e_1, e_2) is BIBO stable.

"Proof" of the Small Gain Theorem

Existence of solution (e_1,e_2) for every (r_1,r_2) has to be verified separately. Then

$$||e_1||_2 \le ||r_1||_2 + \gamma(S_2)[||r_2||_2 + \gamma(S_1)||e_1||_2]$$

gives

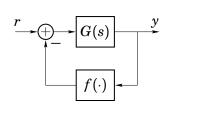
$$||e_1||_2 \le \frac{||r_1||_2 + \gamma(S_2)||r_2||_2}{1 - \gamma(S_2)\gamma(S_1)}$$

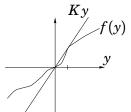
 $\gamma(S_2)\gamma(S_1) < 1, \ \|r_1\|_2 < \infty, \ \|r_2\|_2 < \infty \ \text{give} \ \|e_1\|_2 < \infty.$ Similarly we get

$$\|e_2\|_2 \le \frac{\|r_2\|_2 + \gamma(S_1)\|r_1\|_2}{1 - \gamma(S_1)\gamma(S_2)}$$

so also e_2 is bounded.

Linear System with Static Nonlinear Feedback (1)





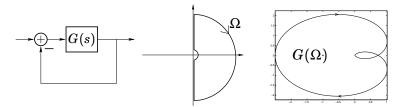
$$G(s) = \frac{2}{(s+1)^2}$$

and
$$0 \le \frac{f(y)}{y} \le K$$

$$\gamma(G) = 2$$
 and $\gamma(f) \leq K$.

The small gain theorem gives that $K \in [0, 1/2)$ implies BIBO stability.

The Nyquist Theorem

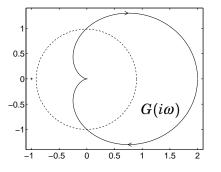


Theorem

The closed loop system is stable iff the number of counter-clockwise encirclements of -1 by $G(\Omega)$ (note: ω increasing) equals the number of open loop unstable poles.

The Small Gain Theorem can be Conservative

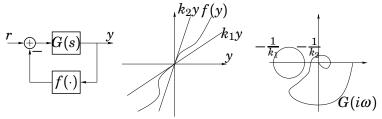
Let f(y) = Ky for the previous system.



The Nyquist Theorem proves stability when $K \in [0, \infty)$. The Small Gain Theorem proves stability when $K \in [0, 1/2)$.

The Circle Criterion

Case 1: $0 < k_1 \le k_2 < \infty$



Theorem Consider a feedback loop with y = Gu and u = -f(y) + r. Assume G(s) is stable and that

$$0 < k_1 \le \frac{f(y)}{y} \le k_2.$$

If the Nyquist curve of G(s) does not intersect or encircle the circle defined by the points $-1/k_1$ and $-1/k_2$, then the closed-loop system is BIBO stable from r to y.

Other cases

G: stable system

- ▶ $0 < k_1 < k_2$: Stay outside circle
- ▶ $0 = k_1 < k_2$: Stay to the right of the line Re $s = -1/k_2$
- $k_1 < 0 < k_2$: Stay inside the circle

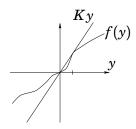
Other cases: Multiply f and G with -1.

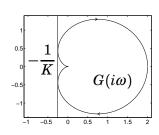
G: Unstable system

To be able to guarantee stability, k_1 and k_2 must have same sign (otherwise unstable for k=0)

- ▶ $0 < k_1 < k_2$: Encircle the circle p times counter-clockwise (if ω increasing)
- ▶ $k_1 < k_2 < 0$: Encircle the circle p times counter-clockwise (if ω increasing)

Linear System with Static Nonlinear Feedback (2)





The "circle" is defined by $-1/k_1 = -\infty$ and $-1/k_2 = -1/K$.

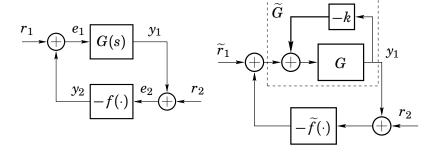
min Re
$$G(i\omega) = -1/4$$

so the Circle Criterion gives that if $K \in [0,4)$ the system is BIBO stable.

Proof of the Circle Criterion

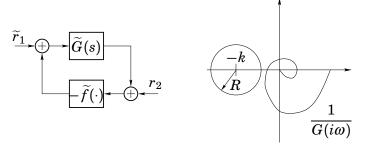
Let $k = (k_1 + k_2)/2$ and $\tilde{f}(y) = f(y) - ky$. Then

$$\left|\frac{\widetilde{f}(y)}{y}\right| \le \frac{k_2 - k_1}{2} =: R$$



$$\widetilde{r}_1 = r_1 - kr_2$$

Proof of the Circle Criterion (cont'd)



SGT gives stability for
$$|\widetilde{G}(i\omega)|R < 1$$
 with $\widetilde{G} = \frac{G}{1 + kG}$.

$$R < \frac{1}{|\widetilde{G}(i\omega)|} = \left| \frac{1}{G(i\omega)} + k \right|$$

Transform this expression through $z \to 1/z$.

Lyapunov revisited

Original idea: "Energy is decreasing"

$$\dot{x} = f(x), \qquad x(0) = x_0$$
 $V(x(T)) - V(x(0)) \le 0$
(+some other conditions on V)

New idea: "Increase in stored energy ≤ added energy"

$$\dot{x} = f(x, u), \qquad x(0) = x_0$$
 $y = h(x)$

$$V(x(T)) - V(x(0)) \le \int_0^T \underbrace{\varphi(y, u)}_{\text{external power}} dt \qquad (1)$$

Motivation

Will assume the external power has the form $\phi(y, u) = y^T u$.

Only interested in BIBO behavior. Note that

$$\exists V \geq 0 \text{ with } V(x(0)) = 0 \text{ and (1)}$$
 \iff
$$\int_0^T y^T u \, dt \geq 0$$

Motivated by this we make the following definition

Passive System



Definition The system S is **passive** from u to y if

$$\int_0^T y^T u \, dt \geq 0, \quad \text{for all } u \text{ and all } T > 0$$

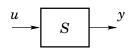
and **strictly passive** from u to y if there $\exists \epsilon > 0$ such that

$$\int_0^T y^T u \, dt \ge \epsilon(|y|_T^2 + |u|_T^2), \quad \text{for all } u \text{ and all } T > 0$$

A Useful Notation

Define the scalar product

$$\langle y, u \rangle_T = \int_0^T y^T(t)u(t) dt$$

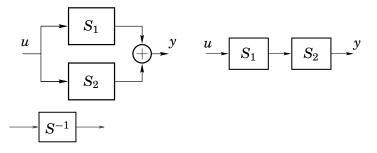


Cauchy-Schwarz inequality:

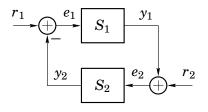
$$\langle y, u \rangle_T \le |y|_T |u|_T$$

where $|y|_T = \sqrt{\langle y, y \rangle_T}$. Note that $|y|_{\infty} = ||y||_2$.

2 minute exercise:



Feedback of Passive Systems is Passive



If S_1 and S_2 are passive, then the closed-loop system from (r_1, r_2) to (y_1, y_2) is also passive.

Passivity of Linear Systems

Theorem An asymptotically stable linear system G(s) is **passive** if and only if

$$\operatorname{Re} G(i\omega) \geq 0, \quad \forall \omega > 0$$

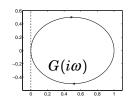
It is **strictly passive** if and only if there exists $\epsilon > 0$ such that

$$\operatorname{Re} G(i\omega) \ge \epsilon (1 + |G(i\omega)|^2), \quad \forall \omega > 0$$

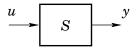
Example

 $G(s) = \frac{s+1}{s+2}$ is passive and strictly passive,

 $G(s) = \frac{1}{s}$ is passive but not strictly passive.



A Strictly Passive System Has Finite Gain



If S is strictly passive, then $\gamma(S) < \infty$.

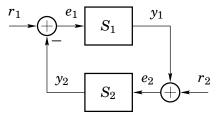
Proof: Note that $||y||_2 = \lim_{T \to \infty} |y|_T$.

$$\epsilon(|y|_T^2 + |u|_T^2) \le \langle y, u \rangle_T \le |y|_T \cdot |u|_T \le ||y||_2 \cdot ||u||_2$$

Hence, $\epsilon |y|_T^2 \leq ||y||_2 \cdot ||u||_2$, so letting $T \to \infty$ gives

$$||y||_2 \le \frac{1}{\epsilon} ||u||_2$$

The Passivity Theorem



Theorem If S_1 is strictly passive and S_2 is passive, then the closed-loop system is BIBO stable from r to y.

Proof of the Passivity Theorem

 S_1 strictly passive and S_2 passive give

$$\epsilon(|y_1|_T^2 + |e_1|_T^2) \le \langle y_1, e_1 \rangle_T + \langle y_2, e_2 \rangle_T = \langle y, r \rangle_T$$

Therefore

$$|y_1|_T^2 + \langle r_1 - y_2, r_1 - y_2 \rangle_T \le \frac{1}{\epsilon} \langle y, r \rangle_T$$

or

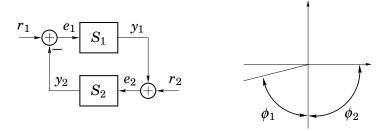
$$|y_1|_T^2 + |y_2|_T^2 - 2\langle y_2, r_2 \rangle_T + |r_1|_T^2 \le \frac{1}{\epsilon} \langle y, r \rangle_T$$

Finally

$$|y|_T^2 \le 2\langle y_2, r_2 \rangle_T + \frac{1}{\epsilon} \langle y, r \rangle_T \le \left(2 + \frac{1}{\epsilon}\right) |y|_T |r|_T$$

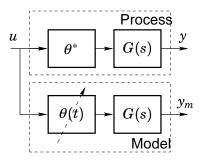
Letting $T \to \infty$ gives $||y||_2 \le C||r||_2$ and the result follows

Passivity Theorem is a "Small Phase Theorem"



Example—Gain Adaptation

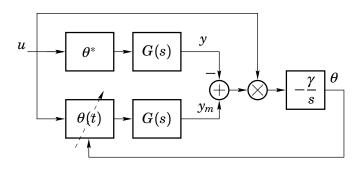
Applications in channel estimation in telecommunication, noise cancelling etc.



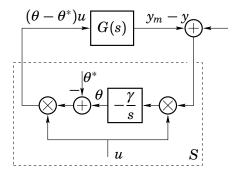
Adaptation law:

$$\frac{d\theta}{dt} = -\gamma u(t)[y_m(t) - y(t)], \qquad \gamma > 0.$$

Gain Adaptation—Closed-Loop System



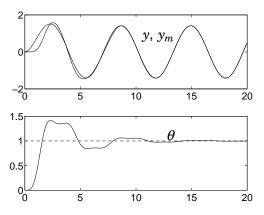
Gain Adaptation is BIBO Stable



S is passive (Exercise 4.12), so the closed-loop system is BIBO stable if G(s) is strictly passive.

Simulation of Gain Adaptation

Let
$$G(s) = \frac{1}{s+1} + \epsilon$$
, $\gamma = 1$, $u = \sin t$, $\theta(0) = 0$ and $\gamma^* = 1$



Storage Function

Consider the nonlinear control system

$$\dot{x} = f(x, u), \qquad y = h(x)$$

A **storage function** is a C^1 function $V: \mathbb{R}^n \to \mathbb{R}$ such that

- V(0) = 0 and $V(x) \ge 0$, $\forall x \ne 0$
- $\dot{V}(x) \leq u^T y, \quad \forall x, u$

Remark:

V(T) represents the stored energy in the system

stored energy at
$$t = T$$

$$\underbrace{V(x(T))}_{\text{absorbed energy}} \leq \underbrace{\int_{0}^{T} y(t)u(t)dt}_{\text{absorbed energy}} + \underbrace{V(x(0))}_{\text{stored energy at }t=0}$$

Storage Function and Passivity

Lemma: If there exists a storage function V for a system

$$\dot{x} = f(x, u), \qquad y = h(x)$$

with x(0) = 0, then the system is passive.

Proof: For all T > 0,

$$\langle y, u \rangle_T = \int_0^T y(t)u(t)dt \ge V(x(T)) - V(x(0)) = V(x(T)) \ge 0$$

Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function

Lyapunov idea: "Energy is decreasing"

$$\dot{V} \leq 0$$

Passivity idea: "Increase in stored energy ≤ Added energy"

$$\dot{V} \leq u^T y$$

Example KYP Lemma

Consider an asymptotically stable linear system

$$\dot{x} = Ax + Bu, \ \ y = Cx$$

Assume there exists positive definite symmetric matrices $P,\,Q$ such that

$$A^T P + PA = -Q$$
, and $B^T P = C$

Consider $V = 0.5x^T Px$. Then

$$\dot{V} = 0.5(\dot{x}^T P x + x^T P \dot{x}) = 0.5x^T (A^T P + PA)x + u^T B^T P x
= -0.5x^T Q x + u^T y < u^T y, x \neq 0$$
(2)

and hence the system is strictly passive. This fact is part of the Kalman-Yakubovich-Popov lemma.

Next Lecture

Describing functions (analysis of oscillations)