
Lecture 5 — Input–output stability

or

“How to make a circle out of the point −1+ 0i, and different
ways to stay away from it ...”
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Course Outline

Lecture 1-3 Modelling and basic phenomena
(linearization, phase plane, limit cycles)

Lecture 4-6 Analysis methods
(Lyapunov, circle criterion, describing functions)

Lecture 7-8 Common nonlinearities
(Saturation, friction, backlash, quantization)

Lecture 9-13 Design methods
(Lyapunov methods, Backstepping, Optimal control)

Lecture 14 Summary
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Today’s Goal

To understand

signal norms

system gain

bounded input bounded output (BIBO) stability

To be able to analyze stability using

the Small Gain Theorem,

the Circle Criterion,

Passivity

Material

[Glad & Ljung]: Ch 1.5-1.6, 12.3 [Khalil]: Ch 5–7.1

lecture slides
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History

−

r y
G(s)

f (⋅)

y

f (y)

For what G(s) and f (⋅) is the closed-loop system stable?

Lur’e and Postnikov’s problem (1944)

Aizerman’s conjecture (1949) (False!)

Kalman’s conjecture (1957) (False!)

Solution by Popov (1960) (Led to the Circle Criterion)
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Gain

Idea: Generalize static gain to nonlinear dynamical systems

u y
S

The gain γ of S measures the largest amplification from u to y

Here S can be a constant, a matrix, a linear time-invariant
system, a nonlinear system, etc

Question: How should we measure the size of u and y?
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Norms

A norm q ⋅ q measures size.

A norm is a function from a space Ω to R+, such that for all
x, y ∈ Ω

qxq ≥ 0 and qxq = 0 \ x = 0

qx + yq ≤ qxq + qyq

qα xq = pα p ⋅ qxq, for all α ∈ R

Examples

Euclidean norm: qxq =
√
x21 + ⋅ ⋅ ⋅+ x2n

Max norm: qxq = max{px1p, . . . , pxnp}
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Signal Norms

A signal x(t) is a function from R+ to Rd.
A signal norm is a way to measure the size of x(t).

Examples

2-norm (energy norm): qxq2 =
√∫∞

0
px(t)p2dt

sup-norm: qxq∞ = supt∈R+ px(t)p

The space of signals with qxq2 < ∞ is denoted L2.

FRTN05 — Lecture 5 Automatic Control LTH, Lund University



Parseval’s Theorem

Theorem If x, y ∈ L2 have the Fourier transforms

X (iω ) =

∫ ∞

0

e−iω tx(t)dt, Y(iω ) =

∫ ∞

0

e−iω ty(t)dt,

then ∫ ∞

0

yT(t)x(t)dt =
1

2π

∫ ∞

−∞
Y∗(iω )X (iω )dω .

In particular

qxq22 =

∫ ∞

0

px(t)p2dt =
1

2π

∫ ∞

−∞
pX (iω )p2dω .

qxq2 < ∞ corresponds to bounded energy.
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System Gain

A system S is a map between two signal spaces: y = S(u).

u y
S

The gain of S is defined as γ (S) = sup
u∈L2

qyq2
quq2

= sup
u∈L2

qS(u)q2
quq2

Example The gain of a static relation y(t) = αu(t) is

γ (α ) = sup
u∈L2

qαuq2
quq2

= sup
u∈L2

pα pquq2
quq2

= pα p
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Example—Gain of a Stable Linear System

γ
(
G
)
= sup
u∈L2

qGuq2
quq2

= sup
ω∈(0,∞)

pG(iω )p
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10
1

γ (G) pG(iω )p

Proof: Assume pG(iω )p ≤ K for ω ∈ (0,∞). Parseval’s theorem
gives

qyq22 =
1

2π

∫ ∞

−∞
pY(iω )p2dω

=
1

2π

∫ ∞

−∞
pG(iω )p2pU(iω )p2dω ≤ K 2quq22

This proves that γ (G) ≤ K . See [Khalil, Appendix C.10] for a
proof of the equality.
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2 minute exercise: Show that γ (S1S2) ≤ γ (S1)γ (S2).replacements

u y
S2 S1
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Example—Gain of a Static Nonlinearity

p f (x)p ≤ K pxp, f (x∗) = Kx∗

u(t) y(t)
f (⋅) x

x∗

Kx

f (x)

qyq22 =

∫ ∞

0

f 2
(
u(t)

)
dt ≤

∫ ∞

0

K 2u2(t)dt = K 2quq22

u(t) = x∗, t ∈ (0,∞) gives equality [

γ ( f ) = supu∈L2
qyq2
quq2

= K .
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BIBO Stability

u y
S γ (S) = sup

u∈L2

qyq2
quq2

Definition
S is bounded-input bounded-output (BIBO) stable if γ (S) < ∞.

Example: If ẋ = Ax is asymptotically stable then
G(s) = C(sI − A)−1B + D is BIBO stable.
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The Small Gain Theorem

r1

r2

e1

e2

S1

S2

Theorem
Assume S1 and S2 are BIBO stable. If

γ (S1)γ (S2) < 1

then the closed-loop map from (r1, r2) to (e1, e2) is BIBO stable.
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“Proof” of the Small Gain Theorem

Existence of solution (e1, e2) for every (r1, r2) has to be verified
separately. Then

qe1q2 ≤ qr1q2 + γ (S2)[qr2q2 + γ (S1)qe1q2]

gives

qe1q2 ≤
qr1q2 + γ (S2)qr2q2
1− γ (S2)γ (S1)

γ (S2)γ (S1) < 1, qr1q2 < ∞, qr2q2 < ∞ give qe1q2 < ∞.
Similarly we get

qe2q2 ≤
qr2q2 + γ (S1)qr1q2
1− γ (S1)γ (S2)

so also e2 is bounded.
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Linear System with Static Nonlinear Feedback (1)

−

r y
G(s)

f (⋅)

y

K y
f (y)

G(s) =
2

(s+ 1)2
and 0 ≤

f (y)

y
≤ K

γ (G) = 2 and γ ( f ) ≤ K .

The small gain theorem gives that K ∈ [0, 1/2) implies BIBO
stability.
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The Nyquist Theorem

−
G(s)

Ω
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Theorem
The closed loop system is stable iff the number of
counter-clockwise encirclements of −1 by G(Ω) (note: ω

increasing) equals the number of open loop unstable poles.
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The Small Gain Theorem can be Conservative

Let f (y) = Ky for the previous system.
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G(iω )

The Nyquist Theorem proves stability when K ∈ [0,∞).
The Small Gain Theorem proves stability when K ∈ [0, 1/2).
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The Circle Criterion

Case 1: 0 < k1 ≤ k2 < ∞

−
r y

G(s)

f (⋅)

replacements

y

k1y

k2y f (y)

− 1
k1

− 1
k2

G(iω )

Theorem Consider a feedback loop with y = Gu and
u = − f (y) + r. Assume G(s) is stable and that

0 < k1 ≤
f (y)

y
≤ k2.

If the Nyquist curve of G(s) does not intersect or encircle the
circle defined by the points −1/k1 and −1/k2, then the
closed-loop system is BIBO stable from r to y.
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Other cases

G: stable system

0 < k1 < k2: Stay outside circle

0 = k1 < k2: Stay to the right of the line Re s = −1/k2
k1 < 0 < k2: Stay inside the circle

Other cases: Multiply f and G with −1.

G: Unstable system
To be able to guarantee stability, k1 and k2 must have same
sign (otherwise unstable for k = 0)

0 < k1 < k2: Encircle the circle p times counter-clockwise
(if ω increasing)

k1 < k2 < 0: Encircle the circle p times counter-clockwise
(if ω increasing)
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Linear System with Static Nonlinear Feedback (2)

y

K y
f (y)
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−
1

K
G(iω )

The “circle” is defined by −1/k1 = −∞ and −1/k2 = −1/K .

min ReG(iω ) = −1/4

so the Circle Criterion gives that if K ∈ [0, 4) the system is
BIBO stable.
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Proof of the Circle Criterion

Let k = (k1 + k2)/2 and f̃ (y) = f (y) − ky. Then

∣∣∣∣
f̃ (y)

y

∣∣∣∣ ≤
k2 − k1
2

=: R

y1

y2

r1

r2

e1

e2

G(s)

− f (⋅)

r̃1

G̃

G

−k

y1

r2
− f̃ (⋅)

r̃1 = r1 − kr2

FRTN05 — Lecture 5 Automatic Control LTH, Lund University



Proof of the Circle Criterion (cont’d)

r̃1

r2

G̃(s)

− f̃ (⋅)

−k

R

1

G(iω )

SGT gives stability for pG̃(iω )pR < 1 with G̃ =
G

1+ kG
.

R <
1

pG̃(iω )p
=

∣∣∣∣
1

G(iω )
+ k

∣∣∣∣

Transform this expression through z→ 1/z.
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Lyapunov revisited

Original idea: “Energy is decreasing”

ẋ = f (x), x(0) = x0

V (x(T)) − V (x(0)) ≤ 0

(+some other conditions on V)

New idea: “Increase in stored energy ≤ added energy”

ẋ = f (x,u), x(0) = x0

y = h(x)

V (x(T)) − V (x(0)) ≤

∫ T

0

ϕ(y,u)︸ ︷︷ ︸
external power

dt (1)
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Motivation

Will assume the external power has the form φ(y,u) = yTu.

Only interested in BIBO behavior. Note that

∃V ≥ 0 with V (x(0)) = 0 and (1)

Z[
∫ T

0

yTu dt ≥ 0

Motivated by this we make the following definition

FRTN05 — Lecture 5 Automatic Control LTH, Lund University



Passive System

u y
S

Definition The system S is passive from u to y if

∫ T

0

yTu dt ≥ 0, for all u and all T > 0

and strictly passive from u to y if there ∃ǫ > 0 such that

∫ T

0

yTu dt ≥ ǫ(pyp2T + pup
2
T ), for all u and all T > 0

FRTN05 — Lecture 5 Automatic Control LTH, Lund University



A Useful Notation

Define the scalar product

〈y,u〉T =

∫ T

0

yT(t)u(t) dt

u y
S

Cauchy-Schwarz inequality:

〈y,u〉T ≤ pypT pupT

where pypT =
√
〈y, y〉T . Note that pyp∞ = qyq2.
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2 minute exercise:

u y
S1

S2

PSfr

u y
S1 S2

S−1
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Feedback of Passive Systems is Passive

−

r1

r2

y1

y2

e1

e2

S1

S2

If S1 and S2 are passive, then the closed-loop system from
(r1, r2) to (y1, y2) is also passive.

Proof: 〈y, r〉T = 〈y1, r1〉T + 〈y2, r2〉T

= 〈y1, r1 − y2〉T + 〈y2, r2 + y1〉T

= 〈y1, e1〉T + 〈y2, e2〉T ≥ 0

Hence, 〈y, r〉T ≥ 0 if 〈y1, e1〉T ≥ 0 and 〈y2, e2〉T ≥ 0
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Passivity of Linear Systems

Theorem An asymptotically stable linear system G(s) is
passive if and only if

ReG(iω ) ≥ 0, ∀ω > 0

It is strictly passive if and only if there exists ǫ > 0 such that

ReG(iω ) ≥ ǫ(1+ pG(iω )p2), ∀ω > 0

Example

G(s) =
s+ 1

s+ 2
is passive and

strictly passive,

G(s) =
1

s
is passive but not

strictly passive. 0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

0.6
 

 

G(iω )
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A Strictly Passive System Has Finite Gain

u y
S

If S is strictly passive, then γ (S) < ∞.

Proof: Note that qyq2 = limT→∞ pypT .

ǫ(pyp2T + pup
2
T ) ≤ 〈y,u〉T ≤ pypT ⋅ pupT ≤ qyq2 ⋅ quq2

Hence, ǫpyp2T ≤ qyq2 ⋅ quq2, so letting T →∞ gives

qyq2 ≤
1

ǫ

quq2
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The Passivity Theorem

−

r1

r2

y1

y2

e1

e2

S1

S2

Theorem If S1 is strictly passive and S2 is passive, then the
closed-loop system is BIBO stable from r to y.
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Proof of the Passivity Theorem

S1 strictly passive and S2 passive give

ǫ

(
py1p

2
T + pe1p

2
T

)
≤ 〈y1, e1〉T + 〈y2, e2〉T = 〈y, r〉T

Therefore

py1p
2
T + 〈r1 − y2, r1 − y2〉T ≤

1

ǫ

〈y, r〉T

or

py1p
2
T + py2p

2
T − 2〈y2, r2〉T + pr1p

2
T ≤

1

ǫ

〈y, r〉T

Finally

pyp2T ≤ 2〈y2, r2〉T +
1

ǫ

〈y, r〉T ≤

(
2+
1

ǫ

)
pypT prpT

Letting T →∞ gives qyq2 ≤ Cqrq2 and the result follows
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Passivity Theorem is a “Small Phase Theorem”

−

r1

r2

y1

y2

e1

e2

S1

S2

φ2φ1
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Example—Gain Adaptation

Applications in channel estimation in telecommunication, noise
cancelling etc.

replacements

Model

Process
u

θ ∗

θ (t)

G(s)

G(s)

y

ym

Adaptation law:

dθ

dt
= −γ u(t)[ym(t) − y(t)], γ > 0.
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Gain Adaptation—Closed-Loop System

u

−
−

γ

s

θ ∗

θ (t)

G(s)

G(s)

y

ym

θ
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Gain Adaptation is BIBO Stable

u S

θ ∗

θ

(θ − θ ∗)u ym − y

−
−

γ

s

G(s)

S is passive (Exercise 4.12), so the closed-loop system is BIBO
stable if G(s) is strictly passive.
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Simulation of Gain Adaptation

Let G(s) =
1

s+ 1
+ ǫ, γ = 1, u = sin t, θ (0) = 0 and γ ∗ = 1

0 5 10 15 20
−2

0

2

0 5 10 15 20
0

0.5

1

1.5

y, ym

θ
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Storage Function

Consider the nonlinear control system

ẋ = f (x,u), y = h(x)

A storage function is a C1 function V : Rn → R such that

V (0) = 0 and V (x) ≥ 0, ∀x ,= 0

V̇(x) ≤ uT y, ∀x,u

Remark:

V (T) represents the stored energy in the system

V (x(T))︸ ︷︷ ︸
stored energy at t = T

≤

∫ T

0

y(t)u(t)dt

︸ ︷︷ ︸
absorbed energy

+ V (x(0))︸ ︷︷ ︸
stored energy at t = 0

,

∀T > 0
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Storage Function and Passivity

Lemma: If there exists a storage function V for a system

ẋ = f (x,u), y = h(x)

with x(0) = 0, then the system is passive.

Proof: For all T > 0,

〈y,u〉T =

∫ T

0

y(t)u(t)dt ≥ V (x(T)) − V (x(0)) = V (x(T)) ≥ 0
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Lyapunov vs. Passivity

Storage function is a generalization of Lyapunov function

Lyapunov idea: “Energy is decreasing”

V̇ ≤ 0

Passivity idea: “Increase in stored energy ≤ Added energy”

V̇ ≤ uT y
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Example KYP Lemma

Consider an asymptotically stable linear system

ẋ = Ax + Bu, y = Cx

Assume there exists positive definite symmetric matrices P, Q
such that

ATP+ PA = −Q, and BTP = C

Consider V = 0.5xTPx. Then

V̇ = 0.5(ẋTPx + xTPẋ) = 0.5xT(ATP + PA)x + uTBTPx

= −0.5xTQx + uT y< uT y, x ,= 0
(2)

and hence the system is strictly passive. This fact is part of the
Kalman-Yakubovich-Popov lemma.
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Next Lecture

Describing functions (analysis of oscillations)
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