
Lecture 13 — Nonlinear Control Synthesis Cont’d

Today’s Goal: To understand the meaning of the concepts

Gain scheduling
Internal model control
Model predictive control
Nonlinear observers
Lie brackets

Material:

Lecture notes
Internal model, more info in e.g.,

Section 8.4 in [Glad&Ljung]
Ch 12.1 in [Khalil]
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Gain Scheduling

Process

schedule

Gain

Output 

Control
signal

Controller
parameters

Operating
condition

Command
signal

Controller

Example of scheduling variables

Production rate

Machine speed

Mach number and dynamic pressure

Compare structure with adaptive control!
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Valve Characteristics

Flow

Position

Quick opening

Linear

Equal percentage
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Nonlinear Valve
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Anders Rantzer Lecture 13, Nonlinear Control Synthesis p. 4



Results

Without gain scheduling
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Results

With gain scheduling
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Gain Scheduling

state dependent controller parameters.
K = K (q)

design controllers for a number of operating points.
use the closest controller.

Problems:

How should you switch between different controllers?
Bumpless transfer

Switching between stabilizing controllers can cause
instability.
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Outline

○ Gain scheduling

• Internal model control

○ Model predictive control

○ Nonlinear observers

○ Lie brackets
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Internal Model Control

−

−

r u y

ŷ

Q(s)

C(s)

G(s)

Ĝ(s)

Feedback from model error y− ŷ.

Design: Choose Ĝ # G and Q stable with Q # G−1.
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Two equivalent diagrams
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Example

G(s) =
1

1+ sT1
Choose

Q =
1+ sT1
1+ τ s

Gives the PI controller

C =
1+ sT1
sτ

=
T1
τ

(
1+

1

T1s

)
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Internal Model Control Can Give Problems

Unstable G
Q $# G−1 due to RHP zeros
Cancellation of process poles may show up in some
signals
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Internal Model Control with Static Nonlinearity

−

−

r u

v

y
Q G

Ĝ

Include the nonlinearity in the model in the controller.

Choose Q # G−1.
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Example (cont’d)

−

−
r u

v

y
Q G

Ĝ

Assume r = 0 and Ĝ = G:

u = −Q(y− Ĝv) = −
1+ sT1
1+ τ s

y+
1

1+ τ s
v

Same as before if %u% ≤ umax: Integrating controller.
If %u% > umax then

u = −
1+ sT1
1+ τ s

y±
umax
1+ τ s

No integration. (A way to implement anti-windup.)
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Outline

○ Gain scheduling

○ Internal model control

• Model predictive control

○ Nonlinear observers

○ Lie brackets
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Model Predictive Control – MPC

1 Derive the future controls u(t+ j), j = 0, 1, . . . ,N − 1
that give an optimal predicted response.

2 Apply the first control u(t).
3 Start over from 1 at next sample.
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What is Optimal?

Minimize a cost function, V , of inputs and predicted outputs.

V = V (Ut,Yt), Ut =




u(t+ N − 1)

...
u(t)



 , Yt =




ŷ(t+ M %t)

...
ŷ(t+ 1%t)





V often quadratic

V (Ut,Yt) = YTt QyYt + UTt QuUt (1)

=' linear controller

u(t) = −Lx̂(t%t)
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Model Predictive Control

+ Flexible method
* Many types of models for prediction:

state space, input–output, step response, FIR filters
* MIMO
* Time delays

+ Can include constraints on input signal and states
+ Can include future reference and disturbance information
– On-line optimization needed
– Stability (and performance) analysis can be complicated

Typical application:
Chemical processes with slow sampling (minutes)
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A predictor for Linear Systems

Discrete-time model

x(t+ 1) = Ax(t) + Bu(t) + Bvv1(t)
y(t) = Cx(t) + v2(t)

t = 0, 1, . . .

Predictor (v unknown)

x̂(t+ k+ 1%t) = Ax̂(t+ k%t) + Bu(t + k)
ŷ(t+ k%t) = Cx̂(t+ k%t)
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The M -step predictor for Linear Systems

x̂(t%t) is predicted by a standard Kalman filter, using outputs up
to time t, and inputs up to time t− 1.
Future predicted outputs are given by




ŷ(t+M %t)

...
ŷ(t+ 1%t)



 =




CAM

...
CA



 x̂(t%t)+




CB CAB CA2B . . .

0 CB CAB . . .
... . . . . . . ...









u(t+ M − 1)
...

u(t + N − 1)
...
u(t)





Yt = Dxx̂(t%t) + DuUt
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Limitations

Limitations on control signals, states and outputs,

%u(t)% ≤ Cu %xi(t)% ≤ Cxi %y(t)% ≤ Cy,

leads to linear programming or quadratic optimization.

Efficient optimization software exists.
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Design Parameters

Model
M (look on settling time)
N as long as computational time allows
If N < M − 1 assumption on u(t+ N), . . . ,u(t+ M − 1)
needed (e.g., = 0, = u(t+ N − 1).)
Qy, Qu (trade-offs between control effort etc)
Cy, Cu limitations often given
Sampling time

Product: ABB Advant
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Example–Motor

A =

1 0.139
0 0.861


 , B =


0.214
2.786


 , C =


1 0




Minimize V (Ut) = (Yt − R( where R =




r
...
r



, r=reference,

M = 8, N = 2, u(t+ 2) = u(t+ 3) = u(t+ 7) = . . . = 0
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Example–Motor

Yt =




CA8

...
CA



x(t) +




CA6B CA7B
...

...
0 CB





u(t+ 1)
u(t)




= Dxx(t) + DuUt

Solution without control constraints

Ut = −(DTu Du)−1DTu Dxx + (DTu Du)−1DTu R =

= −

−2.50 −0.18
2.77 0.51





x1(t)− r
x2(t)




Use
u(t) = −2.77(x1(t)− r)− 0.51x2(t)
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Example–Motor–Results

No control constraints in opti-
mization (but in simulation)
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Outline

○ Gain scheduling

○ Internal model control

○ Model predictive control

• Nonlinear observers

○ Lie brackets
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Nonlinear Observers
What if x is not measurable?

ẋ = f (x,u), y = h(x)

Simplest observer (open loop – only works for as. stable
systems).

˙̂x = f (x̂,u)

Correction, as in linear case,

˙̂x = f (x̂,u) + K (y− h(x̂))

Choices of K

Linearize f at x0, find K for the linearization
Linearize f at x̂(t), find K (t) for the linearization

Second case is called Extended Kalman Filter
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A Nonlinear Observer for the Pendulum

Control tasks:
1 Swing up
2 Catch
3 Stabilize in upward
position

The observer must to be valid
for a complete revolution
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A Nonlinear Observer for the Pendulum

d2θ

dt2
= sinθ + u cosθ

x1 = θ , x2 = dθ
dt ='

dx1
dt
= x2

dx2
dt
= sin x1 + u cos x1

Observer structure:

dx̂1
dt
= x̂2 +k1(x1 − x̂1)

dx̂2
dt
= sin x̂1 + u cos x̂1 +k2(x1 − x̂1)
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A Nonlinear Observer for the Pendulum
Introduce the error x̃ = x̂ − x






dx̃1
dt
= −k1 x̃1 + x̃2

dx̃2
dt
= sin x̂1 − sin x1 + u(cos x̂1 − cos x1)− k2 x̃1

d

dt

[
x̃1
x̃2

]
=

[
−k1 1
−k2 0

] [
x̃1
x̃2

]
+

[
0

1

]
v

v = 2 sin
x̃1
2

(
cos (x1 +

x̃1
2
)− u sin(x1 +

x̃1
2
)
)

G(s)

x̃1 v
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Stability with Small Gain Theorem

The linear block:

G(s) =
1

s2 + k1s+ k2

%
1

G(iω )
%2 = ω 4 + (k21 − 2k2)ω 2 + k22

= (ω 2 − k2 + k21/2)
2 − k41/4+ k

2
1k2

γ G = max %G(iω )% =






1√
k2
1
k2−k41/4

, if k21 < 2k2
1
k2
, if k21 ≥ 2k2
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Stability with Small Gain Theorem

v = 2 sin
x̃1
2

(
cos (x1 +

x̃1
2
)− u sin(x1 +

x̃1
2
)
)

%v% ≤ %x̃1%
√
1+ u2max = β %x̃1%

The observer is stable if γ Gβ < 1

=' k2 >

{
β 2k−21 + k

2
1/4, if k1 <

√
2β ,

β , if k1 ≥
√
2β
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A Nonlinear Observer for the Pendulum

0 1 2 3 4 5 6 7 8 9 10
−5

0

5
Control Signal
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0
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4

Angle estimate
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−15

−10

−5

0

Estimated angular velocity
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Outline

○ Gain scheduling

○ Internal model control

○ Model predictive control

○ Nonlinear observers

• Lie brackets
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Controllability

Linear case
ẋ = Ax + Bu

All controllability definitions coincide

0→ x(T),
x(0)→ 0,
x(0)→ x(T)

T either fixed or free

Rank condition System is controllable iff

Wn =

B AB . . . An−1B


 full rank

Is there a corresponding result for nonlinear systems?
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Lie Brackets

Lie bracket between f (x) and ,(x) is defined by

[ f ,,] =
-,
-x
f −

- f
-x
,

Example:

f =

cos x2
x1


 , , =


x1
1


 ,

[ f ,,] =
-,
-x
f −

- f
-x
,

=

1 0

0 0





cos x2
x1


−


0 − sin x2
1 0





x1
1




=

cos x2 + sin x2−x1
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Why interesting?

ẋ = ,1(x)u1 + ,2(x)u2

The motion (u1,u2) =






(1, 0), t ∈ [0, ε]
(0, 1), t ∈ [ε, 2ε]
(−1, 0), t ∈ [2ε, 3ε]
(0,−1), t ∈ [3ε, 4ε]

gives motion x(4ε) = x(0) + ε
2[,1,,2] + O(ε3)

Φt[,1,,2] = limn→∞(Φ
√
t
n

−,2Φ

√
t
n

−,1Φ

√
t
n

,2 Φ

√
t
n

,1 )n

The system is controllable if the Lie bracket tree has full
rank (controllable=the states you can reach from x = 0 at fixed time T contains a ball around x = 0)
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The Lie Bracket Tree

[,1,,2]

[,1, [,1,,2]]
[,2, [,1,,2]]

[,1, [,1, [,1,,2]]] [,2, [,1, [,1,,2]]] [,1, [,2, [,1,,2]]] [,2, [,2, [,1,,2]]]
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Parking Your Car Using Lie-Brackets

ϕ

θ

x

y

(x, y)

d

dt




x

y

ϕ
θ



=




0

0

0

1



u1 +




cos(ϕ + θ )
sin(ϕ + θ )
sin(θ )
0



u2
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Parking the Car

Can the car be moved sideways?

Sideways: in the (− sin(ϕ), cos(ϕ), 0, 0)T -direction?

[,1,,2] =
-,2
-x
,1 −

-,1
-x
,2

=




0 0 − sin(ϕ + θ ) − sin(ϕ + θ )
0 0 cos(ϕ + θ ) cos(ϕ + θ )
0 0 0 cos(θ )
0 0 0 0







0

0

0

1



− 0

=




− sin(ϕ + θ )
cos(ϕ + θ )
cos(θ )
0



=: ,3 = “wriggle”
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Once More

[,3,,2] =
-,2
-x
,3 −

-,3
-x
,2 = . . .

=




− sin(ϕ)
cos(ϕ)
0

0



= “sideways”

The motion [,3,,2] takes the car sideways.

(−sin(ϕ), cos(ϕ))
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The Parking Theorem

You can get out of any parking lot that is bigger than your car.
Use the following control sequence:

Wriggle, Drive, –Wriggle(this requires a cool head), –Drive
(repeat).
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Outline

○ Gain scheduling

○ Internal model control

○ Model predictive control

○ Nonlinear observers

○ Lie brackets

• Extra: Integral quadratic constraints
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Integral Quadratic Constraint

∆vv

∆

The (possibly nonlinear) operator ∆ on Lm2 [0,∞) is said to
satisfy the IQC defined by Π if

∫ ∞

−∞

[
v̂(iω )
(̂∆v)(iω )

]∗

Π(iω )

[
v̂(iω )
(̂∆v)(iω )

]

dω ≥ 0

for all v ∈ L2[0,∞).
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IQC Stability Theorem

G(s)

τ ∆

Let G(s) be stable and proper and let ∆ be causal.
For all τ ∈ [0, 1], suppose the loop is well posed and τ ∆
satisfies the IQC defined by Π(iω ). If

[
G(iω )
I

]∗

Π(iω )
[
G(iω )
I

]
< 0 for ω ∈ [0,∞]

then the feedback system is input/output stable.
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∆ structure Π(iω ) Condition

∆ passive
[
0 I

I 0

]

(∆(iω )( ≤ 1
[
x(iω )I 0

0 −x(iω )I

]
x(iω ) ≥ 0

δ ∈ [−1, 1]
[
X (iω ) Y(iω )
Y(iω )∗ −X (iω )

]
X = X ∗ ≥ 0
Y = −Y∗

δ (t) ∈ [−1, 1]
[
X Y

YT −X

]

∆(s) = e−θs − 1
[
x(iω )ρ(ω )2 0

0 −x(iω )

]
ρ(ω ) =

2max%θ %≤θ0 sin(θω/2)
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A Matlab toolbox for system analysis

http://www.ee.mu.oz.au/staff/cykao/

−e y
G

−4 −2 0 2 4 6 8

−2

0

2

4

6

8
G(iω )

>> abst_init_iqc;
>> G = tf([10 0 0],[1 2 2 1]);
>> e = signal
>> w = signal
>> y = -G*(e+w)
>> w==iqc_monotonic(y)
>> iqc_gain_tbx(e,y)
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A servo with friction

2s  +2s+12

.01s  +s2

Transfer Fcn
Sum1Sum

Step

Scope

Saturation

s
1

Integrator1
s
1

Integrator

−K−

Gain2

−1

Gain1

10

Gain
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An analysis model defined graphically

 Exp(−ds)−1

uncertain delay

performance
monotonic with 

restrict rate

2s  +2s+12

0.01s  +s+.012

Transfer Fcn

Sum2

Sum1Sum
s
1

Integrator1
s
1

Integrator

10

Gain
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ż iqc_gui(’fricSYSTEM’)

extracting information from fricSYSTEM ...

scalar inputs: 5
states: 10
simple q-forms: 7

LMI #1 size = 1 states: 0
LMI #2 size = 1 states: 0
LMI #3 size = 1 states: 0
LMI #4 size = 1 states: 0
LMI #5 size = 1 states: 0

Solving with 62 decision variables ...

ans = 4.7139
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A library of analysis objects

1

Out

window

white noise
performance

unknown const

slope nonlinearity

sector+popov

sector
sat−int

Popov

popov IQC

polytope with
restrict rate

polytope
performance

odd slope nonlinearity

norm bounded

monotonic with 
restrict rate

harmonic

encapsulated odd deadzone

encapsulated deadzone

diagonal structure

 Exp(−ds)−1

cdelay

(s−1)
s(s+1)

Zero−Pole

1
s+1

Transfer Fcn

|D(t)|<k

TV scalar

Sum
Step Source

x’ = Ax+Bu
 y = Cx+Du

State−Space

STV scalar

Mux

Mux

K

Matrix
Gain

LTI unmodeled

1

Gain

Demux

Demux

1

In
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The friction example in text format

d=signal; % disturbance signal

e=signal; % error signal

w1=signal; % friction force

w2=signal; % delay perturbation
u=signal; % control force

v=tf(1,[1 0])*(u-w1) % velocity

x=tf(1,[1 0])*v; % position

e==d-x-w2;

u==10*tf([2 2 1],[0.01 1 0.01])*e;

w1==iqc_monotonic(v,0,[1 5],10)

w2==iqc_cdelay(x,.01)

iqc_gain_tbx(d,e)
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Summary

• Gain scheduling

• Internal model control

• Model predictive control

• Nonlinear observers

• Lie brackets

• Extra: Integral quadratic constraints
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Next: Lecture 14

Course Summary

Anders Rantzer Lecture 13, Nonlinear Control Synthesis p. 54


