
Lecture 10 — Optimal Control

Introduction

Static Optimization with Constraints

Optimization with Dynamic Constraints

The Maximum Principle

Examples

Material

Lecture slides

References to Glad & Ljung, part of Chapter 18
Note: page references to Swedish edition
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Goal

To be able to

solve simple optimal control problems by hand

design controllers

using the maximum principle
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Optimal Control Problems

Idea: Formulate the design problem as optimization problem

+ Gives systematic design procedure

+ Can use on nonlinear models

+ Can capture limitations etc as constraints

– Hard to find suitable criterium?!

– Can be hard to find the optimal controller

Solutions will often be of “bang-bang” character if control signal
is bounded, compare lecture on sliding mode controllers.
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The beginning

John Bernoulli: The bracistochrone problem 1696

Let a particle slide along a frictionless curve. Find the
curve that takes the particle from A to B in shortest time

A

B

?�
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A

B

?�

x

y

1

2
v2 = �y,

dx
ds
= v sinθ ,

dy
ds
= −v cosθ

Find y(x), with y(0) and y(1) given, that minimizes

J(y) =

∫ 1

0

√

1+ y′(x)2
√

2�y(x)
dx

Solved by John and James Bernoulli, Newton, l’Hospital
Euler: Isoperimetric problems

Example: The largest area covered by a curve of given
length is a circle [see also Dido/cow-skin/Carthage].
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Optimal Control

The space race (Sputnik 1957)

Putting satellites in orbit

Trajectory planning for interplanetary travel

Reentry into atmosphere

Minimum time problems

Pontryagin’s maximum principle, 1956

Dynamic programming, Bellman 1957

Vitalization of a classical field
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An example: Goddard’s Rocket Problem (1910)

How to send a rocket as high up in the air as possible?

d

dt







v

h

m






=







u− D

m
− �

v

−γ u







h

m

where u = motor force, D(v,h) = air resistance, m = mass.

Constraints
0 ≤ u ≤ umax , m(t f ) ≥ m1

Criterium
Maximize h(t f ), t f given
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Goddard’s Problem

Can you guess the solution when D(v,h) = 0?

Much harder when D(v,h) ,= 0

Can be optimal to have low v when air resistance is high. Burn
fuel at higher level.

Took about 50 years before a complete solution was found.

Read more about Goddard at http://www.nasa.gov/centers/goddard/

Anders Rantzer Lecture 10, Optimal Control p. 9



Optimal Control Problem. Constituents

Control signal u(t), 0 ≤ t ≤ t f

Criterium h(t f ).

Differential equations relating h(t f ) and u

Constraints on u

Constraints on x(0) and x(t f )

t f can be fixed or a free variable
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Outline

○ Introduction

• Static Optimization with Constraints

○ Optimization with Dynamic Constraints

○ The Maximum Principle

○ Examples
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Preliminary: Static Optimization

Minimize �1(x,u)
over x ∈ Rn and u ∈ Rm s.t. �2(x,u) = 0
(Assume�2(x,u) = 0[ ��2(x,u)/�x non-singular)

Lagrangian: L(x,u,λ) = �1(x,u) + λT�2(x,u)

Local minima of �1(x,u) constrained on �2(x,u) = 0
can be mapped into critical points of L(x,u,λ)

Necessary conditions for local minimum

�L

�x
= 0

�L

�u
= 0

(
�L

�λ
= �2(x,u) = 0

)

Note: Difference if constrained control!

Anders Rantzer Lecture 10, Optimal Control p. 12



Example - static optimization

Minimize
�1(x1, x2) = x

2
1 + x

2
2

with the constraint that

�2(x1, x2) = x1 ⋅ x2 − 1 = 0

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
level curves x2+y2=x and constraint xy=1

 

 

x
2

x1

Level curves for constant �1 and the constraint �2 = 0, repectively.
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Static Optimization cont’d

Solving the equations

�L

�x
=
��1
�x

+ λT
��2
�x

= 0[ λT = −
��1
�x

(
��2
�x

)−1

�L

�u
=
��1
�u

+ λT
��2
�u

= 0[
��1
�u

−
��1
�x

(
��2
�x

)−1 ��2
�u

= 0

This gives m equations to solve for u.

Sufficient condition for local minimum

�2L

�u2
> 0
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Outline

○ Introduction

○ Static Optimization with Constraints

• Optimization with Dynamic Constraints

○ The Maximum Principle

○ Examples
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Optimization with Dynamic Constraint

Optimal Control Problem

min
u
J = min

u

{

φ(x(t f )) +

∫ t f

t0

L(x,u) dt

}

subject to
ẋ = f (x,u), x(t0) = x0

Introduce Hamiltonian: H(x,u,λ) = L(x,u) + λT f (x,u)

J = φ(x(t f )) +

∫ t f

t0

(

L(x,u) + λT( f − ẋ)
)

dt

= φ(x(t f )) −
[

λT x
]t f

t0
+

∫ t f

t0

(

H + λ̇T x
)

dt

second equality obtained from "integration by parts".
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Optimization with Dynamic Constraint cont’d

Variation of J:

δ J =

[(
�φ

�x
− λT

)

δ x

]

t=t f

+

∫ t f

t0

[(
�H

�x
+ λ̇T

)

δ x +
�H

�u
δu

]

dt

Necessary conditions for local minimum (δ J = 0)

λ(t f )
T =

�φ

�x

∣
∣
∣
∣
t=t f

λ̇T = −
�H

�x

�H

�u
= 0

Adjoined, or co-state, variables, λ(t)

λ specified at t = t f and x at t = t0
Two Point Boundary Value Problem (TPBV)

For sufficiency �2H
�u2

≥ 0
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Outline

○ Introduction

○ Static Optimization with Constraints

○ Optimization with Dynamic Constraints
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Problem Formulation (1)

Standard form (1):

Minimize

∫ t f

0

Trajectory cost
︷ ︸︸ ︷

L(x(t),u(t)) dt+

Final cost
︷ ︸︸ ︷

φ(x(t f ))

ẋ(t) = f (x(t),u(t))

u(t) ∈ U , 0 ≤ t ≤ t f , t f given

x(0) = x0

x(t) ∈ Rn, u(t) ∈ Rm

U ⊆ Rm control constraints

Here we have a fixed end-time t f . This will be relaxed later on.
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The Maximum Principle (18.2)

Introduce the Hamiltonian

H(x,u,λ) = L(x,u) + λT(t) f (x,u).

Assume optimization (1) has a solution {u∗(t), x∗(t)}. Then

min
u∈U

H(x∗(t),u,λ(t)) = H(x∗(t),u∗(t),λ(t)), 0 ≤ t ≤ t f ,

where λ(t) solves the adjoint equation

dλ(t)/dt = −HTx (x
∗(t),u∗(t),λ(t)), with λ(t f ) = φTx (x

∗(t f ))

Notation

Hx =
�H

�x
=

(
�H

�x1

�H

�x2
. . .

)
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Remarks

Proof: If you are theoretically interested look in [Glad & Ljung].

Idea: note that every change of u(t) from the suggested
optimal u∗(t) must lead to larger value of the criterium.

Should be called “minimum principle”

λ(t) are called the Lagrange multipliers or the adjoint
variables

Anders Rantzer Lecture 10, Optimal Control p. 21



Remarks

The Maximum Principle gives necessary conditions

A pair (u∗(⋅), x∗(⋅)) is called extremal the conditions of the
Maximum Principle are satisfied. Many extremals can exist.

The maximum principle gives all possible candidates.

However, there might not exist a minimum!

Example

Minimize x(1) when ẋ(t) = u(t), x(0) = 0 and u(t) is free

Why doesn’t there exist a minimum?
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Outline

○ Introduction

○ Static Optimization with Constraints

○ Optimization with Dynamic Constraints

○ The Maximum Principle
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Example–Boat in Stream

x1

x2

v(x2)

min − x1(T)
ẋ1 = v(x2) + u1
ẋ2 = u2
x1(0) = 0
x2(0) = 0
u21 + u

2
2 = 1

Speed of water v(x2) in x1 direction. Move maximum distance
in x1-direction in fixed time T

Assume v linear so that v′(x2) = 1
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Solution

Hamiltonian:

H = 0+ λT f =
[
λ1 λ2

]
[
f1
f2

]

= λ1(v(x2) + u1) + λ2u2

Adjoint equation:
[

λ̇1
λ̇2

]

=

[
−�H/�x1
−�H/�x2

]

=

[
0

−v′(x2)λ1

]

=

[
0

−λ1

]

with boundary conditions

[
λ1(T)
λ2(T)

]

=

[
�φ/�x1px=x∗(t f )

�φ/�x2px=x∗(t f )

]

=

[
−1
0

]

This gives λ1(t) = −1, λ2(t) = t− T
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Solution

Optimality: Control signal should solve

min
u2
1
+u2
2
=1

λ1(v(x2) + u1) + λ2u2

Minimize λ1u1 + λ2u2 so that (u1,u2) has length 1

u1(t) = −
λ1(t)

√

λ2
1
(t) + λ2

2
(t)
, u2(t) = −

λ2(t)
√

λ2
1
(t) + λ2

2
(t)

u1(t) =
1

√

1+ (t− T)2
, u2(t) =

T − t
√

1+ (t− T)2

See fig 18.1 for plots

Remark: It can be shown that this optimal control problem has a minimum.

Hence it must be the one we found, since this was the only solution to MP
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5 min exercise

Solve the optimal control problem

min

∫ 1

0

u4dt+ x(1)

ẋ = −x + u

x(0) = 0
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5 min exercise - solution

Compare with standard formulation:

t f = 1 L = u4 φ = x f (x) = −x + u

Need to introduce one adjoint state

Hamiltonian:

H = L + λT ⋅ f = u4 + λ(−x + u)

Adjoint equation:

dλ

dt
= −

�H

�x
= −(−λ) =[ λ(t) = Cet

λ(t f ) =
�φ

�x
= 1 =[ λ(t) = et−1
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At optimality:

0 =
�H

�u
= 4u3 + λ

=[ u(t) = 3
√

−λ(t)/4 = 3

√

−e(t−1)/4
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Goddard’s Rocket Problem revisited

How to send a rocket as high up in the air as possible?

d

dt





v

h

m



 =






u− D

m
− �

v

−γ u






h

m

(v(0),h(0),m(0)) = (0, 0,m0), �,γ > 0
u motor force, D = D(v,h) air resistance

Constraints: 0 ≤ u ≤ umax and m(t f ) = m1 (empty)

Optimization criterion: maxt f ,u h(t f )
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Problem Formulation (2)

min
t f≥0

u:[0,t f ]→U

∫ t f

0

L(x(t),u(t)) dt + φ(t f , x(t f ))

ẋ(t) = f (x(t),u(t)), x(0) = x0

ψ (t f , x(t f )) = 0

Note the differences compared to standard form:

t f free variable (i.e., not specified a priori)
r end constraints

Ψ(t f , x(t f )) =





Ψ1(t f , x(t f ))
...

Ψr(t f , x(t f ))




= 0

time varying final penalty, φ(t f , x(t f ))

The Maximum Principle will be generalized in the next lecture!
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Summary

○ Introduction

○ Static Optimization with Constraints

○ Optimization with Dynamic Constraints

○ The Maximum Principle

○ Examples
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