## Lecture 9 — Nonlinear Control Design

- Exact-linearization
- Lyapunov-based design
  - Lab 2
  - Adaptive control
  - Backstepping
- Hybrid / Piece-wise linear control
  - NOTE: Only overview!

### **Course Outline**

| Lecture 1-3  | Modelling and basic phenomena (linearization, phase plane, limit cycles) |
|--------------|--------------------------------------------------------------------------|
| Lecture 2-6  | Analysis methods (Lyapunov, circle criterion, describing functions)      |
| Lecture 7-8  | Common nonlinearities (Saturation, friction, backlash, quantization)     |
| Lecture 9-13 | Design methods<br>(Lyapunov methods, Backstepping, Optimal control)      |
| Lecture 14   | Summary 1666                                                             |

#### **Exact Feedback Linearization**

#### Idea:

Find state feedback u = u(x, v) so that the nonlinear system

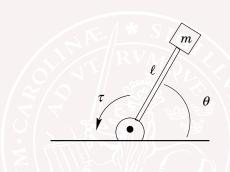
$$\dot{x} = f(x) + g(x)u$$

turns into the linear system

$$\dot{x} = Ax + Bv$$

and then apply linear control design method.

## **Exact linearization: example [one-link robot]**



$$m\ell^2\ddot{\theta} + d\dot{\theta} + m\ell g\cos\theta = u$$

where d is the viscous damping.

The control  $u = \tau$  is the applied torque

Design state feedback controller u = u(x) with  $x = (\theta, \dot{\theta})^T$ 

Introduce new control variable v and let

$$u = m\ell^2 v + d\dot{\theta} + m\ell g\cos\theta$$

Then

$$\ddot{\theta} = v$$

Choose e.g. a PD-controller

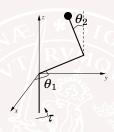
$$v = v(\theta, \dot{\theta}) = k_p(\theta_{\mathsf{ref}} - \theta) - k_d \dot{\theta}$$

This gives the closed-loop system:

$$\ddot{\theta} + k_d \dot{\theta} + k_p \theta = k_p \theta_{\text{ref}}$$

Hence, 
$$u=m\ell^2[k_p(\theta-\theta_{\mathsf{ref}})-k_d\dot{ heta}]+d\dot{ heta}+m\ell g\cos{ heta}$$

## **Multi-link robot (n-joints)**



#### General form

$$M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + G(\theta) = u, \qquad \theta \in \mathbb{R}^n$$

Called *fully* actuated if n indep. actuators,

 $M n \times n$  inertia matrix,  $M = M^T > 0$ 

 $C\dot{\theta}$   $n \times 1$  vector of centrifugal and Coriolis forces

 $G = n \times 1$  vector of gravitation terms

## **Computed torque**

The computed torque (also known as "Exact linearization", "dynamic inversion", etc. )

$$u = M(\theta)v + C(\theta, \dot{\theta})\dot{\theta} + G(\theta)$$

$$v = K_p(\theta_{ref} - \theta) - K_d\dot{\theta},$$
(1)

gives closed-loop system

$$\ddot{\theta} + K_d \dot{\theta} + K_p \theta = K_p \theta_{Ref}$$

The matrices  $K_d$  and  $K_p$  can be chosen diagonal (no cross-terms) and then this decouples into n independent second-order equations.

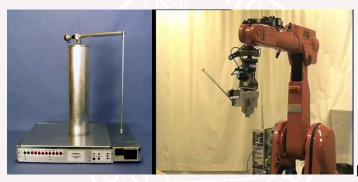
# **Lyapunov-Based Control Design Methods**

$$\dot{x} = f(x, u)$$

- Select Lyapunov function V(x) for stability verification
- Find state feedback u = u(x) that makes V decreasing
- Method depends on structure of f

Examples are energy shaping as in Lab 2 and e.g. **Back-stepping control design**, which require certain f discussed later.

## Lab 2: Energy shaping for swing-up control



[movie]

Use Lyapunov-based design for swing-up control.

## Lab 2: Energy shaping for swing-up control



Rough outline of method to get the pendulum to the upright position

- Find expression for total energy E of the pendulum (potential energy + kinetic energy)
- Let  $E_n$  be energy in upright position.
- Look at deviation  $V = \frac{1}{2}(E E_n)^2 \ge 0$
- $\bullet$  Find "swing strategy" of control torque u such that  $\frac{dV}{dt} \leq 0$

## **Example of Lyapunov-based design**

Consider the nonlinear system

$$\dot{x}_1 = -3x_1 + 2x_1x_2^2 + u 
\dot{x}_2 = -x_2^3 - x_2,$$
(2)

Find a nonlinear feedback control law which makes the origin globally asymptotically stable.

We try the standard Lyapunov function candidate

$$V(x_1, x_2) = \frac{1}{2} \left( x_1^2 + x_2^2 \right)$$

which is radially unbounded, V(0,0) = 0, and  $V(x_1, x_2) > 0 \ \forall (x_1, x_2) \neq (0, 0)$ .

## Example of Lyapunov-based design

Consider the nonlinear system

$$\dot{x}_1 = -3x_1 + 2x_1x_2^2 + u 
\dot{x}_2 = -x_2^3 - x_2,$$
(2)

Find a nonlinear feedback control law which makes the origin globally asymptotically stable.

We try the standard Lyapunov function candidate

$$V(x_1, x_2) = \frac{1}{2} (x_1^2 + x_2^2),$$

which is radially unbounded, V(0,0) = 0, and  $V(x_1, x_2) > 0 \ \forall (x_1, x_2) \neq (0, 0)$ .

### Example - cont'd

$$\dot{V} = \dot{x_1}x_1 + \dot{x_2}x_2 = (-3x_1 + 2x_1x_2^2 + u)x_1 + (-x_2^3 - x_2)x_2 
= -3x_1^2 - x_2^2 + ux_1 + 2x_1^2x_2^2 - x_2^4$$

We would like to have

$$\dot{V} < 0 \qquad \forall (x_1, x_2) \neq (0, 0)$$

Inserting the control law,  $u = -2x_1x_2^2$ , we get

$$\dot{V} = -3x_1^2 - x_2^2 - 2x_1^2x_2^2 + 2x_1^2x_2^2 - x_2^4 = -3x_1^2 - x_2^2 - x_2^4 < 0, \quad \forall x \neq 0$$

### Example - cont'd

$$\dot{V} = \dot{x_1}x_1 + \dot{x_2}x_2 = (-3x_1 + 2x_1x_2^2 + u)x_1 + (-x_2^3 - x_2)x_2 
= -3x_1^2 - x_2^2 + ux_1 + 2x_1^2x_2^2 - x_2^4$$

We would like to have

$$\dot{V}<0 \qquad \forall (x_1,\,x_2)\neq (0,\,0)$$

Inserting the control law,  $u = -2x_1x_2^2$ , we get

$$\dot{V} = -3x_1^2 - x_2^2 \underbrace{-2x_1^2x_2^2 + 2x_1^2x_2^2}_{-0} - x_2^4 = -3x_1^2 - x_2^2 - x_2^4 < 0, \quad \forall x \neq 0$$

#### Consider the system

$$\begin{aligned}
\dot{x}_1 &= x_2^3 \\
\dot{x}_2 &= u
\end{aligned} \tag{3}$$

#### Find a globally asymptotically stabilizing control law u = u(x).

Attempt 1: Try the standard Lyapunov function candidate

$$V(x_1, x_2) = \frac{1}{2} \left( x_1^2 + x_2^2 \right)$$

which is radially unbounded, V(0,0) = 0, and V(0,0) = 0

$$\dot{V} = \dot{x_1}x_1 + \dot{x_2}x_2 = \dot{x_2} \cdot x_1 + u \cdot x_2 = \dot{x_2}(x_2^2x_1 + u) = -x_2^2 \le 0$$

where we chose

$$u = -x_2 - x_2^2 x_1$$

Consider the system

$$\begin{aligned}
\dot{x}_1 &= x_2^3 \\
\dot{x}_2 &= u
\end{aligned} \tag{3}$$

Find a globally asymptotically stabilizing control law u = u(x).

Attempt 1: Try the standard Lyapunov function candidate

$$V(x_1, x_2) = \frac{1}{2} (x_1^2 + x_2^2),$$

which is radially unbounded, V(0,0) = 0, and  $V(x_1, x_2) > 0 \ \forall (x_1, x_2) \neq (0, 0)$ .

$$\dot{V} = \dot{x_1}x_1 + \dot{x_2}x_2 = x_2^3 \cdot x_1 + u \cdot x_2 = x_2 \underbrace{(x_2^2x_1 + u)}_{-x_2} = -x_2^2 \le 0$$

where we chose

$$u = -x_2 - x_2^2 x_1$$

However  $\dot{V}=0$  as soon as  $x_2=0$  (Note:  $x_1$  could be anything).

According to LaSalle's theorem the set

$$E = \{x | \dot{V} = 0\} = \{(x_1, 0)\} \, \forall x_1$$

What is the largest invariant set M?

Plugging in the control law  $u = -x_2 - x_2^2 x_1$ , we get

$$\dot{x}_1 = x_2^3 
\dot{x}_2 = -x_2 - x_2^2 x_1$$
(4)

and we see that if we start anywhere on the line  $\{(x_1, 0)\}$  we will stay in the same point as both  $\dot{x}_1 = 0$  and  $\dot{x}_2 = 0$ , thus M=E and we will not converge to the origin, but get stuck on the line  $x_2 = 0$ .

Draw phase-plot with e.g., pplane and study the behaviour.

#### Attempt 2:

$$\dot{x}_1 = x_2^3 
 \dot{x}_2 = u 
 \tag{5}$$

Try the Lyapunov function candidate

$$V(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{4}x_2^4,$$

which satisfies

- V(0,0) = 0
- $V(x_1, x_2) > 0$ ,  $\forall (x_1, x_2) \neq (0, 0)$ .
- radially unbounded,

$$\frac{dV}{dt} = \dot{x}_1 x_1 + \dot{x}_2 x_2^3 = x_2^3 (x_1 + u) = -x_2^4 \le 0$$

$$u = -x_1 - x_2$$
 if we use  $u = -x_1 - x_2$ 

With

$$u = -x_1 - x_2$$

we get the dynamics

$$\begin{aligned}
 \dot{x}_1 &= x_2^3 \\
 \dot{x}_2 &= -x_1 - x_2
 \end{aligned}
 \tag{6}$$

 $\dot{V}=0$  if  $x_2=0$ , thus

$$E = \{x | \dot{V} = 0\} = \{(x_1, 0)\} \, \forall x_1$$

However, now the only possibility to stay on  $x_2 = 0$  is if  $x_1 = 0$ , ( else  $\dot{x}_2 \neq 0$  and we will leave the line  $x_2 = 0$ ).

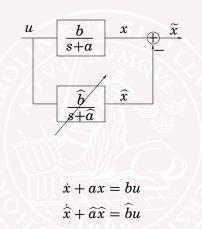
Thus, the largest invariant set

$$M = (0,0)$$

According to the Invariant Set Theorem (LaSalle) all solutions will end up in M and so the origin is GAS.

Draw phase-plot with e.g., pplane and study the behaviour.

### **Adaptive Noise Cancellation Revisited**



Introduce 
$$\widetilde{x} = x - \widehat{x}$$
,  $\widetilde{a} = a - \widehat{a}$ ,  $\widetilde{b} = b - \widehat{b}$ .

Want to design adaptation law so that  $\widetilde{x} \to 0$ 

Let us try the Lyapunov function

$$\begin{split} V &= \frac{1}{2} (\widetilde{x}^2 + \gamma_a \widetilde{a}^2 + \gamma_b \widetilde{b}^2) \\ \dot{V} &= \widetilde{x} \widetilde{x} + \gamma_a \widetilde{a} \widetilde{a} + \gamma_b \widetilde{b} \widetilde{b} = \\ &= \widetilde{x} (-a\widetilde{x} - \widetilde{a} \widehat{x} + \widetilde{b} u) + \gamma_a \widetilde{a} \widetilde{a} + \gamma_b \widetilde{b} \widetilde{b} = -a \widetilde{x}^2 \end{split}$$

where the last equality follows if we choose

$$\dot{\widetilde{a}} = -\dot{\widehat{a}} = \frac{1}{\gamma_a}\widetilde{x}\widehat{x}$$
  $\dot{\widetilde{b}} = -\dot{\widehat{b}} = -\frac{1}{\gamma_b}\widetilde{x}u$ 

Invariant set:  $\tilde{x} = 0$ .

This proves that  $\widetilde{x} \to 0$ .

(The parameters  $\widetilde{a}$  and  $\widetilde{b}$  do not necessarily converge:  $u\equiv 0$ .)

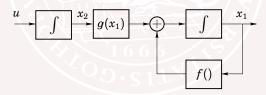
## **Back-Stepping Control Design**

We want to design a state feedback u = u(x) that stabilizes

$$\dot{x}_1 = f(x_1) + g(x_1)x_2 
\dot{x}_2 = u$$
(7)

at x = 0 with f(0) = 0.

**Idea:** See the system as a cascade connection. Design controller first for the inner loop and then for the outer.



Suppose the partial system

$$\dot{x}_1 = f(x_1) + g(x_1)\bar{v}$$

can be stabilized by  $\bar{v}=\phi(x_1)$  and there exists Lyapunov fcn  $V_1=V_1(x_1)$  such that

$$\dot{V}_1(x_1) = \frac{dV_1}{dx_1} \left( f(x_1) + g(x_1)\phi(x_1) \right) \le -W(x_1)$$

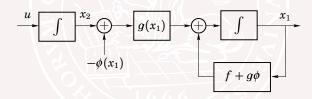
for some positive definite function W.

#### The Trick

#### Equation (7) can be rewritten as

$$\dot{x}_1 = f(x_1) + g(x_1)\phi(x_1) + g(x_1)[x_2 - \phi(x_1)]$$

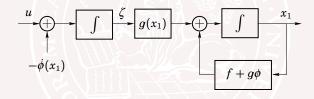
$$\dot{x}_2 = u$$



Introduce new state  $\zeta = x_2 - \phi(x_1)$  and control  $v = u - \dot{\phi}$ :

$$\dot{x}_1 = f(x_1) + g(x_1)\phi(x_1) + g(x_1)\zeta$$

$$\dot{\zeta} = v$$



Consider  $V_2(x_1, x_2) = V_1(x_1) + \zeta^2/2$ . Then,

$$\dot{V}_2(x_1, x_2) = \frac{dV_1}{dx_1} \left( f(x_1) + g(x_1)\phi(x_1) \right) + \frac{dV_1}{dx_1} g(x_1)\zeta + \zeta v 
\leq -W(x_1) + \frac{dV_1}{dx_1} g(x_1)\zeta + \zeta v$$

Choosing

$$v = -\frac{dV_1}{dx_1}g(x_1) - k\zeta, \qquad k > 0$$

gives

$$\dot{V}_2(x_1, x_2) \le -W(x_1) - k\zeta^2$$

Hence, x = 0 is asymptotically stable for (7) with control law  $u(x) = \dot{\phi}(x) + v(x)$ .

If  $V_1$  radially unbounded, then global stability.

## **Back-Stepping Lemma**

**Lemma:** Let  $z = (x_1, \ldots, x_{k-1})^T$  and

$$\dot{z} = f(z) + g(z)x_k$$
$$\dot{x}_k = u$$

Assume  $\phi(0) = 0$ , f(0) = 0,

$$\dot{z} = f(z) + g(z)\phi(z)$$

stable, and V(z) a Lyapunov fcn (with  $\dot{V} \leq -W$ ). Then,

$$u = \frac{d\phi}{dz} \left( f(z) + g(z)x_k \right) - \frac{dV}{dz}g(z) - (x_k - \phi(z))$$

stabilizes x=0 with  $V(z)+(x_k-\phi(z))^2/2$  being a Lyapunov fcn.

### **Strict Feedback Systems**

Back-stepping Lemma can be applied to stabilize systems on strict feedback form:

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)x_2 
\dot{x}_2 = f_2(x_1, x_2) + g_2(x_1, x_2)x_3 
\dot{x}_3 = f_3(x_1, x_2, x_3) + g_3(x_1, x_2, x_3)x_4 
\vdots 
\dot{x}_n = f_n(x_1, \dots, x_n) + g_n(x_1, \dots, x_n)u$$

where  $g_k \neq 0$ 

**Note:**  $x_1, \ldots, x_k$  do not depend on  $x_{k+2}, \ldots, x_n$ .

## **Back-Stepping**

Back-Stepping Lemma can be applied recursively to a system

$$\dot{x} = f(x) + g(x)u$$

on strict feedback form.

Back-stepping generates stabilizing feedbacks  $\phi_k(x_1,\ldots,x_k)$  (equal to u in Back-Stepping Lemma) and Lyapunov functions

$$V_k(x_1,...,x_k) = V_{k-1}(x_1,...,x_{k-1}) + [x_k - \phi_{k-1}]^2/2$$

by "stepping back" from  $x_1$  to u

Back-stepping results in the final state feedback

$$u = \phi_n(x_1,\ldots,x_n)$$

### **Example**

Design back-stepping controller for

$$\dot{x}_1 = x_1^2 + x_2, \quad \dot{x}_2 = x_3, \quad \dot{x}_3 = u$$

**Step 0** Verify strict feedback form **Step 1** Consider first subsystem

$$\dot{x}_1 = x_1^2 + \phi_1(x_1), \quad \dot{x}_2 = u_1$$

where  $\phi_1(x_1)=-x_1^2-x_1$  stabilizes the first equation. With  $V_1(x_1)=x_1^2/2$ , Back-Stepping Lemma gives

$$u_1 = (-2x_1 - 1)(x_1^2 + x_2) - x_1 - (x_2 + x_1^2 + x_1) = \phi_2(x_1, x_2)$$

$$V_2 = x_1^2/2 + (x_2 + x_1^2 + x_1)^2/2$$

#### Step 2 Applying Back-Stepping Lemma on

$$\dot{x}_1 = x_1^2 + x_2$$

$$\dot{x}_2 = x_3$$

$$\dot{x}_3 = u$$

gives

$$u = u_2 = \frac{d\phi_2}{dz} \left( f(z) + g(z)x_n \right) - \frac{dV_2}{dz} g(z) - (x_n - \phi_2(z))$$
  
=  $\frac{\partial \phi_2}{\partial x_1} (x_1^2 + x_2) + \frac{\partial \phi_2}{\partial x_2} x_3 - \frac{\partial V_2}{\partial x_2} - (x_3 - \phi_2(x_1, x_2))$ 

which globally stabilizes the system.

### **Hybrid Control**

Control problems where there is a mixture between continuous states and discrete state variables.

Continuous states: position, velocity, temperature, pressure

Discrete states: on/off variables, controller modes, loss of actuators, loss of sensors, relays, etc

Discontinuous differential equations

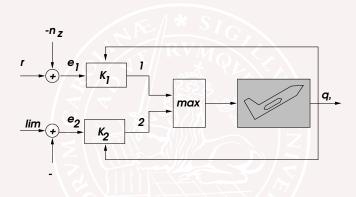
Much active field, much left to understand

## **Example of hybrid control**

Control law that switches between different modes, e.g. between

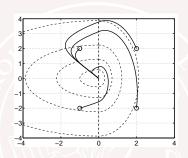
- Time optimal control during large set point changes
- Linear control close to set point

### **Aircraft Example**



(Branicky, 1993)

#### **Phase Plane**



No common quadratic Lyapunov function exists.

$$A_1 = \begin{bmatrix} -5 & -4 \\ -1 & -2 \end{bmatrix} \qquad A_2 = \begin{bmatrix} -2 & -4 \\ 20 & -2 \end{bmatrix}$$

# Piecewise quadratic Lyapunov functions

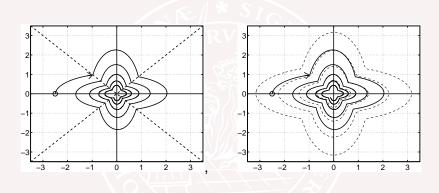
$$V(x) = \begin{cases} x^*Px & \text{if } x_1 < 0\\ x^*Px + \eta x_1^2 & \text{if } x_1 \ge 0 \end{cases}$$

The matrix inequalities

$$A_{1}^{*}P + PA_{1} < 0$$
 $P > 0$ 
 $A_{2}^{*}(P + \eta E^{*}E) + (P + \eta E^{*}E)A_{2} < 0$ 
 $P + \eta E^{*}E > 0$ 

with  $E = [1 \ 0]$ , have the solution  $P = \text{diag}\{1, 3\}$ ,  $\eta = 7$ .

### Flower Example



#### **Next Lecture**

Optimization.

Read chapter 18 in [Glad & Ljung] for preparation.