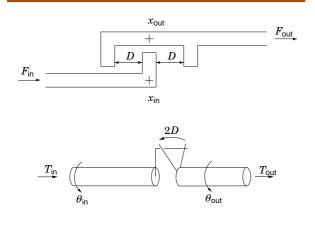
Lecture 8 — Backlash and Quantization

Today's Goal:

To know models and compensation methods for backlash

Be able to analyze the effect of quantization errors

Linear and Angular Backlash



Backlash

Backlash (glapp) is

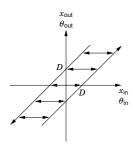
- present in most mechanical and hydraulic systems
- increasing with wear
- bad for control performance
- may cause oscillations

Note: A gear box without any backlash will not work if temperature rises

The Standard Model

Assume instead

- $\dot{x}_{out} = \dot{x}_{in}$ when "in contact"
- x_{out} = 0 when "no contact"
- No model of forces or torques needed/used



Material

Lecture slides

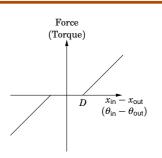
Note: We are using analysis methods from previous lectures (describing functions, small gain theorem etc.), and these have references to the course book(s).

Example: Parallel Kinematic Robot

Gantry-Tau robot: Need backlash-free gearboxes for high precision

EU-project: SMErobotTM www.smerobot.org

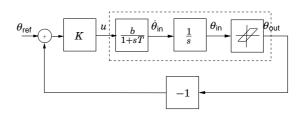
Dead-zone Model



- Often easier to use model of the form $x_{in}(\cdot) \rightarrow x_{out}(\cdot)$
- ► Uses implicit assumption: F_{out} = F_{in}, T_{out} = T_{in}. Can be wrong, especially when "no contact".

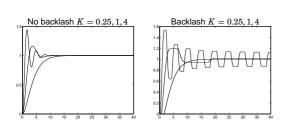
Servo motor with Backlash

P-control of servo motor



How does the values of K and D affect the behavior?

Effects of Backlash



Oscillations for K = 4 but not for K = 0.25 or K = 1. Why? Limit cycle becomes smaller if D is made smaller, but it never disappears

1 minute exercise

Study the plot for the describing function for the backlash on the

Limit cycles?

 $^{-1}$

The describing function method is only approximate.

Κ

Note: θ_{in} and θ_{out} will not converge to zero Idea: Consider instead $\dot{\theta}_{in}$ and $\dot{\theta}_{out}$

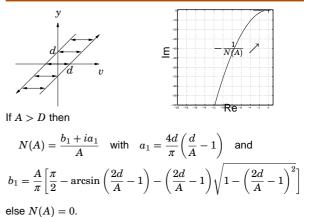
Can one determine conditions that guarantee stability?

 $1 + s'_{1}$

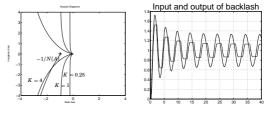
Where does the function $-\frac{1}{N(A)}$ end for $A \to \infty$ and why?

previous slide.

Describing Function for a Backlash



Describing Function Analysis

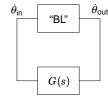


For K = 4, D = 0.2: intersection between $G(j\omega)$ and -1/N(A) occurs for $A = 0.33, \omega = 1.24$

Simulation: A = 0.33, ω = 2π/5.0 = 1.26 Describing function predicts oscillation well!

Backlash Limit Cycles

Rewrite the system as θ_{in} θ_{out}



Note that the block "BL" satisfies

G(s)

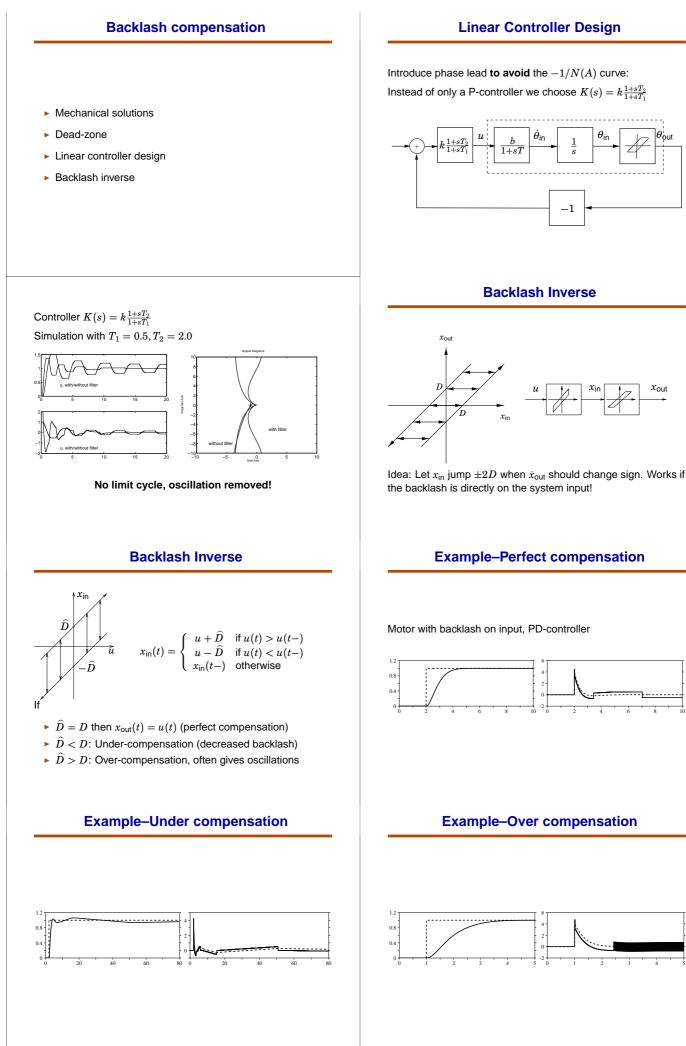
 $\dot{\theta}_{\rm out} = \left\{ \begin{array}{cc} \dot{\theta}_{\rm in} & {\rm in \ contact} \\ 0 & {\rm otherwise} \end{array} \right.$

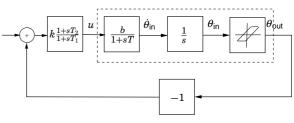
Analysis by circle criterion

Backlash block has gain ≤ 1 (from $\dot{\theta}_{in}$ to $\dot{\theta}_{out}$) Hence closed loop is stable if G(s) asymptotically stable and $|G(i\omega)| < 1$ for all ω

Analysis by small gain theorem

Backlash block has gain in the sector [0, 1] (from $\dot{\theta}_{in}$ to $\dot{\theta}_{out}$) $-1/k_1 = \infty$ and $-1/k_2 = -1$ Hence closed loop is stable if Re $G(i\omega) > -1$ for all ω . (For our motor example this proves stability when K < 1)





Backlash–More advanced models

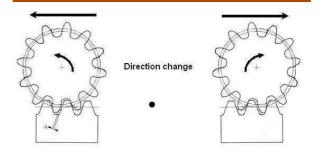
Warning: More detailed models needed sometimes Model what happens when contact is attained Model external forces that influence the backlash Model mass/moment of inertia of the backlash.

Example: Parallel Kinematic Robot

Gantry-Tau robot: Need backlash-free gearboxes for very high precision

 ${\sf EU}{\sf -project}: {\sf SMErobot}^{\sf TM} \quad {\tt http://www.smerobot.org}$

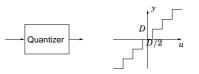
Backlash in gearbox and rails



Remedy:

Use two motors, possible to motors in opposite directions: One motor can act as spring and brake to "reduce" backlash. Need measurements on both motor and arm-side.

Quantization

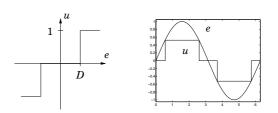


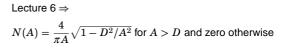
How accurate should the converters be? (8-14 bits?) What precision is needed in computations? (8-64 bits?)

Quantization in A/D and D/A converters

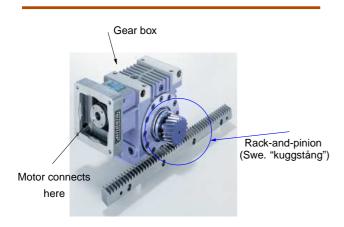
- Quantization of parameters
- Roundoff, overflow, underflow in operations
- NOTE: Compare with (different) limits for "quantizer/dead-zone relay" in Lecture 6.

Describing Function for Deadzone Relay

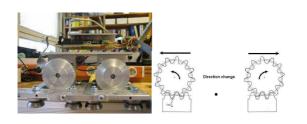




"Rotational to Linear motion"



Backlash compensation



From master thesis by B. Brochier, *Control of a Gantry-Tau Structure, LTH, 2006* See also master theses by j. Schiffer and L. Halt, 2009.

Linear Model of Quantization

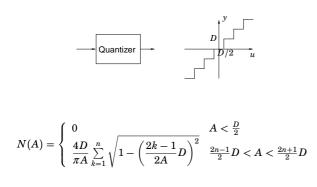
Model the quantization error as a stochastic signal e independent of u with rectangular distribution over the quantization size.

Works if quantization level is small compared to the variations in \boldsymbol{u}

Rectangular noise distribution over $\left[-\frac{D}{2}, \frac{D}{2}\right]$ has the variance

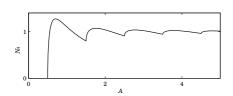
$$Var(e) = \int_{-\infty}^{+\infty} e^2 f_e \, de = \int_{-D/2}^{D/2} e^2 \frac{1}{D} de = \frac{D^2}{12}$$

Describing Function for Quantizer



(See exercise)

5 minute exercise



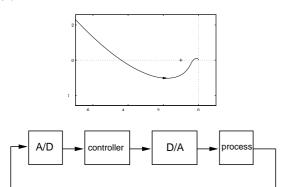
How does the shape of the describing function relate to the number of possible limit cycles and their stability.

What if the Nyquist plot

- ▶ intersects the negative real axis at -0.80?
- ▶ intersects the negative real axis at −1?
- ▶ intersects the negative real axis at -2?

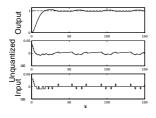
Example – Double integrator with 2nd order controller

Nyquist curve



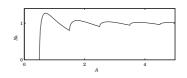
Quantization at D/A converter

Double integrator with 2nd order controller, D = 0.01



Describing function: $A_u \approx D/2 = 0.005$, period T = 39Simulation: $A_u = 0.005$ and T = 39Better prediction, since more sinusoidal signals

Describing Function for Quantizer



The maximum value is $4/\pi \approx 1.27$ for $A \approx 0.71D$.

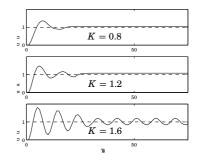
Predicts limit cycle if Nyquist curve intersects negative real axis to the left of $-\pi/4\approx-0.79.$

Should design for gain margin > 1/0.79 = 1.27!

Note that reducing D only reduces the size of the limit oscillation, the oscillation does not vanish completely.

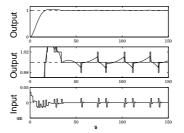
Example – Motor with P-controller.

Roundoff at input, D = 0.2. Nyquist curve intersects at -0.5K. Hence stable for K < 2 without quantization. Stable oscillation predicted for K > 2/1.27 = 1.57.



Quantization at A/D converter

Double integrator with 2nd order controller, D = 0.02



Describing function: $A_y \approx D/2 = 0.01$, period T = 39Simulation: $A_y = 0.01$ and T = 28

Quantization Compensation

- Use improved converters, (small quantization errors/larger word length)
- Linear design, avoid unstable controller, ensure gain margin>1.3
- Use the tracking idea from anti-windup to improve D/A converter
- Use analog dither, oversampling and digital low-pass filter to improve accuracy of A/D converter

