# Lecture 7: Anti-windup and friction compensation

#### Compensation for saturations (anti-windup)

- Friction models
- Friction compensation

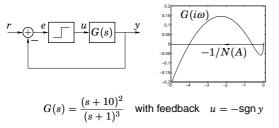
#### Material

Lecture slides

### **Course Outline**

| Lecture 1-3  | Modelling and basic phenomena<br>(linearization, phase plane, limit cycles) |
|--------------|-----------------------------------------------------------------------------|
| Lecture 2-6  | Analysis methods<br>(Lyapunov, circle criterion, describing functions)      |
| Lecture 7-8  | Common nonlinearities (Saturation, friction, backlash, quantization)        |
| Lecture 9-13 | Design methods<br>(Lyapunov methods, Backstepping, Optimal control)         |
| Lecture 14   | Summary                                                                     |

# Last lecture: Stable periodic solution



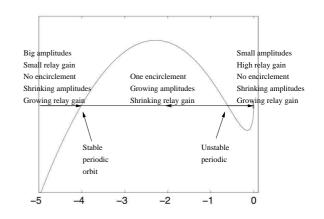
gives one stable and one unstable limit cycle. The left most intersection corresponds to the stable one.

# **Today's Goal**

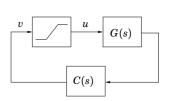
- To be able to design and analyze antiwindup schemes for
  PID
  - state-space systems
  - and Kalman filters (observers)
- To understand common models of friction
- ► To design and analyze friction compensation schemes

## Periodic Solutions in Relay System

The relay gain N(A) is higher for small A:



## Windup – The Problem



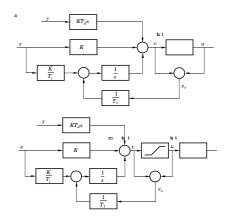
The feedback path is broken when u saturates

The controller C(s) is a dynamic system

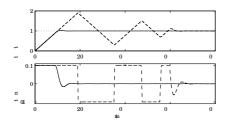
Problems when controller is unstable (or stable but not AS) Example: I-part in PID-controller

# Anti-windup for PID-Controller ("Tracking")

Anti-windup (a) with actuator output available and (b) without

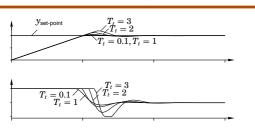


# **Example-Windup in PID Controller**



Dashed line: ordinary PID-controller Solid line: PID-controller with anti-windup

# Choice of Tracking Time $T_t$



With very small  $T_t$  (large gain  $1/T_t$ ), spurious errors can saturate the output, which leads to accidental reset of the integrator. Too large  $T_t$  gives too slow reaction (little effect).

The tracking time  $T_t$  is the design parameter of the anti-windup.

Common choices:  $T_t = T_i$  or  $T_t = \sqrt{T_i T_d}$ .

## Antiwindup – General State-Space Controller

State-space controller:

$$\begin{aligned} \dot{x}_c(t) &= Fx_c(t) + Gy(t) \\ u(t) &= Cx_c(t) + Dy(t) \end{aligned}$$

Windup possible if F is unstable and u saturates.



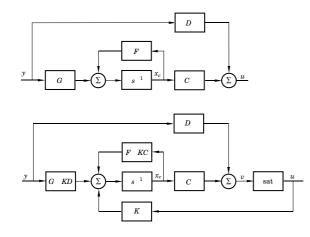
Idea:

Rewrite representation of control law from (a) to (b) such that:

(a) and (b) have same input-output relation

(b) behaves better when feedback loop is broken, if  $S_B$  stable

State-space controller without and with anti-windup:



# Saturation

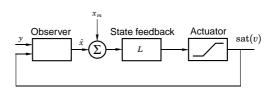
Optimal control theory (later)

#### Multi-loop Anti-windup (Cascaded systems):

Difficult problem, several suggested solutions

Turn off integrator in outer loop when inner loop saturates

### State feedback with Observer



$$\hat{x} = A\hat{x} + B \operatorname{sat}(v) + K(y - C\hat{x}) v = L(x_m - \hat{x})$$

 $\hat{x}$  is estimate of process state,  $x_m$  desired (model) state. Need model of saturation if sat(v) is not measurable

## Antiwindup – General State-Space Controller

Mimic the observer-based controller:

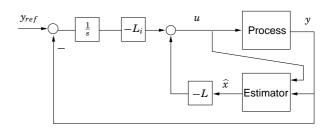
$$\dot{x}_c = Fx_c + Gy + K \underbrace{(u - Cx_c - Dy)}_{=0}$$
$$= (F - KC)x_c + (G - KD)y + Ku$$
$$= F_0x_c + G_0y + Ku$$

Design so that  $F_0 = F - KC$  has desired stable eigenvalues Then use controller

$$\begin{aligned} \dot{x}_c &= F_0 x_c + G_0 y + K u \\ u &= \operatorname{sat} \left( C x_c + D y \right) \end{aligned}$$

### **5 Minute Exercise**

How would you do antiwindup for the following state-feedback controller with observer and integral action ?



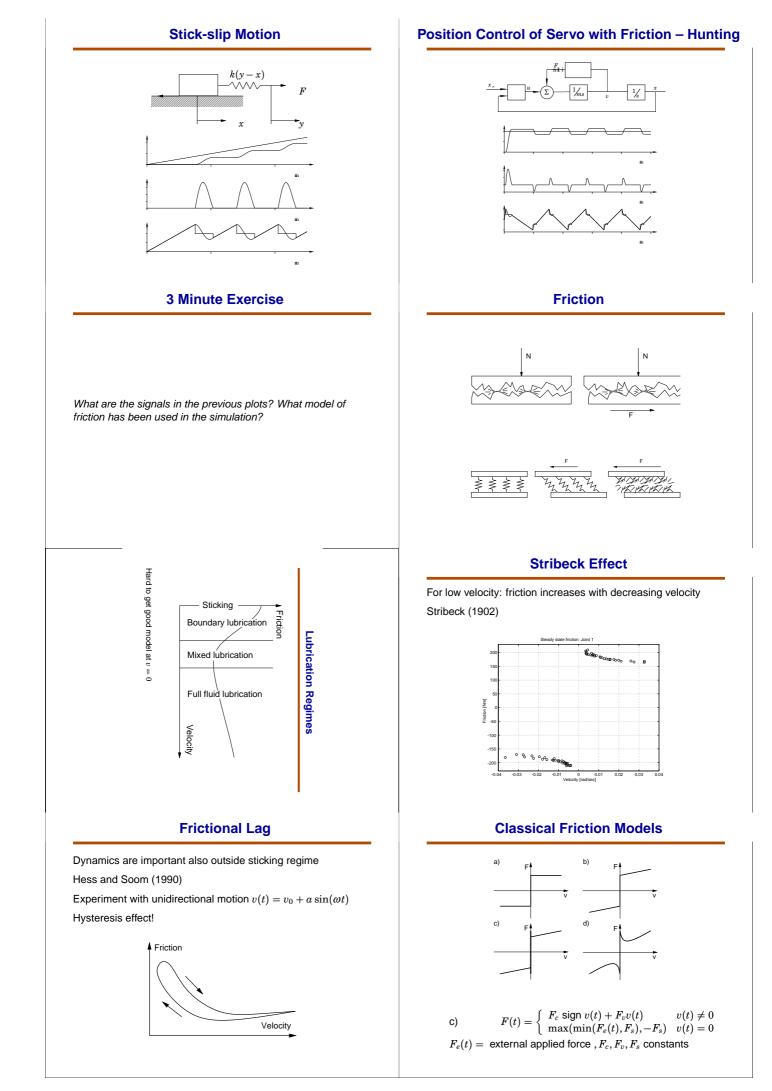
### Friction

Almost is present almost everywhere

- Often bad
  - Friction in valves and mechanical constructions
- Somtimes good
- Friction in brakes
- Sometimes too small
  Earthquakes

Problems

- How to model friction
- ► How to compensate for friction



### **Advanced Friction Models**

### **Demands on a model**

See PhD-thesis by Henrik Olsson

- Karnopp model
- Armstrong's seven parameter model
- Dahl model
- Bristle model
- Reset integrator model
- Bliman and Sorine
- Wit-Olsson-Åström

#### To be useful for control the model should be

- sufficiently accurate,
- suitable for simulation,
- simple, few parameters to determine.
- physical interpretations, insight

Pick the simplest model that does the job! If no stiction occurs the v = 0-models are not needed.

# **Friction Compensation**

- Lubrication
- Integral action (beware!)
- Dither

۱

- Non-model based control
- Model based friction compensation
- Adaptive friction compensation

### **Integral Action**

- The integral action compensates for any external disturbance
- Good if friction force changes slowly ( $v \approx \text{constant}$ ).
- $\bullet$  To get fast action when friction changes one must use much integral action (small  $T_i)$
- · Gives phase lag, may cause stability problems etc

### **Deadzone - Modified Integral Action**

Modify integral part to  $I = \frac{K}{T_{i}} \int^{t} \hat{e}(t) d\tau$ 

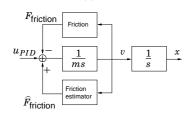
where input to integrator 
$$\hat{e} = \left\{ \begin{array}{ll} e(t) - \eta & e(t) > \eta \\ 0 & |e(t)| < \eta \\ e(t) + \eta & e(t) < -\eta \end{array} \right.$$



Advantage: Avoid that small static error introduces limit cycle Disadvantage: Must accept small error (will not go to zero)

### **Adaptive Friction Compensation**

### Coulomb Friction $F = a \operatorname{sgn}(v)$

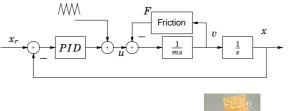


Assumption: *v* measurable. Friction estimator:

$$\begin{array}{rcl} \dot{z} &=& k u_{PID} \operatorname{sgn}(v) \\ & \widehat{a} &=& z - k m |v| \\ & \widehat{F}_{\mathrm{friction}} &=& \widehat{a} \operatorname{sgn}(v) \end{array}$$

# **Mechanical Vibrator–Dither**

Avoids sticking at v = 0 where there usually is high friction by adding high-frequency mechanical vibration (dither )



Cf., mechanical maze puzzle (labyrintspel)



Result:  $e = a - \hat{a} \to 0$  as  $t \to \infty$ ,

since

$$\begin{aligned} \frac{de}{dt} &= -\frac{d\hat{a}}{dt} = -\frac{dz}{dt} + km\frac{d}{dt}|v| \\ &= -ku_{PID}\operatorname{sgn}(v) + km\dot{v}\operatorname{sgn}(v) \\ &= -k\operatorname{sgn}(v)(u_{PID} - m\hat{v}) \\ &= -k\operatorname{sgn}(v)(F - \hat{F}) \\ &= -k(a - \hat{a}) \\ &= -ke \end{aligned}$$

Remark: Careful with  $\frac{d}{dt}|v|$  at v = 0.

