Lecture 6 — Describing function analysis

Course Outline

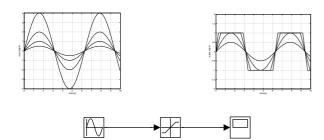
Today's Goal: To be able to

- Derive describing functions for static nonlinearities
- Predict stability and existence of periodic solutions through describing function analysis

Material:

- Slotine and Li: Chapter 5
- Chapter 14 in Glad & Ljung
- Chapter 7.2 (pp.280–290) in Khalil
- (Chapter 8 in Adaptive Control by Åström & Wittenmark)
- Lecture notes

Example: saturated sinusoidals



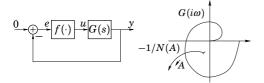
The "effective gain" (the ratio $\frac{\operatorname{sat}(A\sin\omega t)}{A\sin\omega t}$) varies with the input signal amplitude *A*.

Motivating Example (cont'd)

Heuristic reasoning:

For what frequency and what amplitude is "the loop gain" $f \cdot G = -1$?

Introduce N(A) as an amplitude dependent approximation of the nonlinearity $f(\cdot)$.

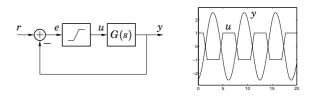


$$y = G(i\omega)u \approx -G(i\omega)N(A)y \quad \Rightarrow \quad G(i\omega) = -\frac{1}{N(A)}$$

- How do we derive the **describing function** N(A)?
- Does the intersection predict a stable oscillation?
- Are the estimated amplitude and frequency accurate?

Lecture 1-3	Modelling and basic phenomena (linearization, phase plane, limit cycles)
Lecture 2-6	Analysis methods (Lyapunov, circle criterion, describing functions)
Lecture 7-8	Common nonlinearities (Saturation, friction, backlash, quantization)
Lecture 9-13	Design methods (Lyapunov methods, Backstepping, Optimal control)
Lecture 14	Summary

Motivating Example

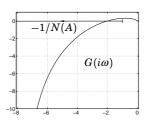


 $G(s) = \frac{4}{s(s+1)^2}$ and u = sat(e) gives stable oscillation for r = 0.

How can the oscillation be predicted?

Q: What is the amplitude/topvalue of u and y? What is the frequency?

Motivating Example (cont'd)



Introduce N(A) as an amplitude dependent gain-approximation of the nonlinearity $f(\cdot)$.

Heuristic reasoning: For what frequency and what amplitude is "the loop gain" $N(A) \cdot G(iw) = -1?$

The intersection of the -1/N(A) and the Nyquist curve $G(i\omega)$ predicts amplitude and frequency.

Fourier Series

Every periodic function u(t) = u(t + T) has a Fourier series expansion

$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega t + b_n \sin n\omega t)$$
$$= \frac{a_0}{2} + \sum_{n=1}^{\infty} \sqrt{a_n^2 + b_n^2} \sin[n\omega t + \arctan(a_n/b_n)]$$

where $\omega = 2\pi/T$ and

$$a_n = \frac{2}{T} \int_0^T u(t) \cos n\omega t \, dt \qquad b_n = \frac{2}{T} \int_0^T u(t) \sin n\omega t \, dt$$

Note: Sometimes we make the change of variable $t \to \phi/\omega$

The Fourier Coefficients are Optimal

The finite expansion

$$\widehat{u}_k(t) = \frac{a_0}{2} + \sum_{n=1}^k (a_n \cos n\omega t + b_n \sin n\omega t)$$

solves

$$\min_{\widehat{u}} \frac{2}{T} \int_0^T \left[u(t) - \widehat{u}_k(t) \right]^2 dt$$

if $\{a_n, b_n\}$ are the Fourier coefficients.

Definition of Describing Function

The describing function is

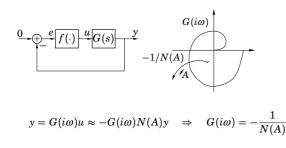
If G is low pass and $a_0 = 0$, then

 $\hat{u}_1(t) = |N(A,\omega)|A\sin[\omega t + \arg N(A,\omega)]$

can be used instead of u(t) to analyze the system.

Amplitude dependent gain and phase shift!

Existence of Limit Cycles



The intersections of $G(i\omega)$ and -1/N(A) give ω and A for possible limit cycles.

Describing Function for Odd Static Nonlinearities

Assume $f(\cdot)$ and $g(\cdot)$ are odd static nonlinearities (i.e., f(-e) = -f(e)) with describing functions N_f and N_g . Then,

• Im
$$N_f(A, \omega) = 0$$
, coeff. $(a_1 \equiv 0)$
• $N_f(A, \omega) = N_f(A)$
• $N_{\alpha f}(A) = \alpha N_f(A)$
• $N_{f+g}(A) = N_f(A) + N_g(A)$

The Key Idea

Assume $e(t) = A \sin \omega t$ and u(t) periodic. Then

$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \sqrt{a_n^2 + b_n^2} \sin[n\omega t + \arctan(a_n/b_n)]$$

If $|G(in\omega)| \ll |G(i\omega)|$ for n = 2, 3, ... and $a_0 = 0$, then

$$y(t) \approx |G(i\omega)| \sqrt{a_1^2 + b_1^2 \sin[\omega t + \arctan(a_1/b_1) + \arg G(i\omega)]}$$

Find periodic solution by matching coefficients in y = -e.

Idea: "Use the describing function to approximate the part of the signal coming out from the nonlinearity which will survive through the low-pass filtering linear system".

$$e(t) = A\sin\omega t = \operatorname{Im} (Ae^{i\omega t})$$

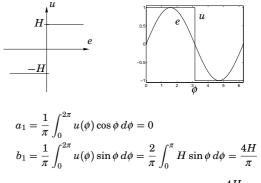
$$\underbrace{u(t)}_{\text{N.L.}} \underbrace{u(t)}_{u(t)} = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos n\omega t + b_n \sin n\omega t)$$

$$\underbrace{e(t)}_{N(A,\omega)} \underbrace{u_1(t)}_{u_1(t)} \qquad u_1(t) = a_1 \cos(\omega t) + b_1 \sin(\omega t)$$
$$= \operatorname{Im} \left(N(A,\omega) A e^{i\omega t} \right)$$

where the describing function is defined as

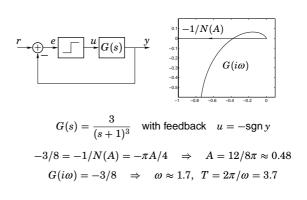
$$N(A,\omega) = \frac{b_1(\omega) + ia_1(\omega)}{A} \Longrightarrow U(i\omega) \approx N(A,\omega)E(i\omega)$$

Describing Function for a Relay



The describing function for a relay is thus $N(A) = \frac{4H}{\pi A}$.

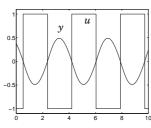
Limit Cycle in Relay Feedback System



Limit Cycle in Relay Feedback System (cont'd)

Describing Function for a Saturation

The prediction via the describing function agrees very well with the true oscillations:



G filters out almost all higher-order harmonics.

Describing Function for a Saturation (cont'd)

$$\begin{aligned} a_1 &= \frac{1}{\pi} \int_0^{2\pi} u(\phi) \cos \phi \, d\phi = 0 \\ b_1 &= \frac{1}{\pi} \int_0^{2\pi} u(\phi) \sin \phi \, d\phi = \frac{4}{\pi} \int_0^{\pi/2} u(\phi) \sin \phi \, d\phi \\ &= \frac{4A}{\pi} \int_0^{\phi_0} \sin^2 \phi \, d\phi + \frac{4D}{\pi} \int_{\phi_0}^{\pi/2} \sin \phi \, d\phi \\ &= \frac{A}{\pi} \left(2\phi_0 + \sin 2\phi_0 \right) \end{aligned}$$

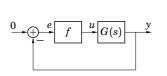
3 minute exercise:

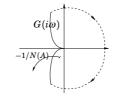
What oscillation amplitude and frequency do the describing function analysis predict for the "Motivating Example"?

How to Predict Stability of Limit Cycles

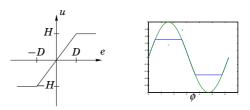
Assume G(s) stable. For a given $A = A_0$:

- A increases if the point $-1/N_f(A_0)$ is encircled by $G(i\omega)$
- A decreases otherwise





A stable limit cycle is predicted



Let $e(t) = A \sin \omega t = A \sin \phi$. First set H = D. If $A \le D$ then N(A) = 1, if A > D then for $\phi \in (0, \pi)$

$$u(\phi) = \begin{cases} A \sin \phi, & \phi \in (0, \phi_0) \cup (\pi - \phi_0, \pi) \\ D, & \phi \in (\phi_0, \pi - \phi_0) \end{cases}$$

where $\phi_0 = \arcsin D/A$.

Describing Function for a Saturation (cont'd)

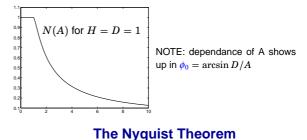
If
$$H = D$$

 $N(L)$

 $N(A) = rac{1}{\pi} igg(2 \phi_0 + \sin 2 \phi_0 igg), \qquad A \geq D$

For $H \neq D$ the rule $N_{\alpha f}(A) = \alpha N_f(A)$ gives

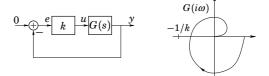
$$N(A) = \frac{H}{D\pi} \left(2\phi_0 + \sin 2\phi_0 \right), \qquad A \ge D$$



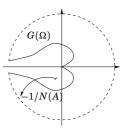
The Nyquist Theorem

Assume G(s) stable, and k is positive gain.

- For the closed-loop system is unstable if the point -1/k is encircled by $G(i\omega)$
- The closed-loop system is stable if the point -1/k is not encircled by $G(i\omega)$



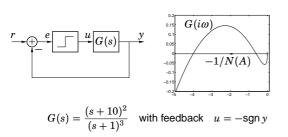
How to Predict Stability of Limit Cycles



An unstable limit cycle is predicted

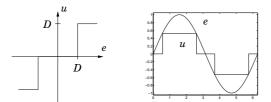
An intersection with amplitude A_0 is unstable if $A < A_0$ gives decreasing amplitude and $A > A_0$ gives increasing.

Stable Periodic Solution in Relay System



gives one stable and one unstable limit cycle. The left most intersection corresponds to the stable one.

Describing Function for a dead-zone relay

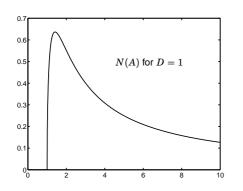


Let $e(t) = A \sin \omega t = A \sin \phi$. Then for $\phi \in (0, \pi)$

$$u(\phi) = \begin{cases} 0, & \phi \in (0, \phi_0) \\ D, & \phi \in (\phi_0, \pi - \phi_0) \end{cases}$$

where $\phi_0 = \arcsin D/A$ (if $A \ge D$)

Plot of Describing Function for dead-zone relay



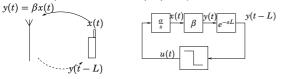
Notice that $N(A) \approx 1.3/A$ for large amplitudes

Example

The control of output power x(t) from a mobile telephone is critical for good performance. One does not want to use too large power since other channels are affected and the battery length is decreased. Information about received power is sent back to the transmitter and is used for power control. A very simple scheme is given by

$$\begin{aligned} \dot{x}(t) &= \alpha u(t) \\ u(t) &= -\text{sign } y(t-L), \qquad \alpha, \beta > 0 \\ y(t) &= \beta x(t). \end{aligned}$$

Use describing function analysis to predict possible limit cycle amplitude and period of *y*. (The signals have been transformed so x = 0 corresponds to nominal output power)



Automatic Tuning of PID Controller

Period and amplitude of relay feedback limit cycle can be used for autotuning.

Describing Function for a dead-zone relay-cont'd.

$$a_{1} = \frac{1}{\pi} \int_{0}^{2\pi} u(\phi) \cos \phi \, d\phi = 0$$

$$b_{1} = \frac{1}{\pi} \int_{0}^{2\pi} u(\phi) \sin \phi \, d\phi = \frac{4}{\pi} \int_{\phi_{0}}^{\pi/2} D \sin \phi \, d\phi$$

$$= \frac{4D}{\pi} \cos \phi_{0} = \frac{4D}{\pi} \sqrt{1 - D^{2}/A^{2}}$$

$$N(A) = \begin{cases} 0, & A < D \\ \frac{4}{\pi A} \sqrt{1 - D^{2}/A^{2}}, & A \ge D \end{cases}$$

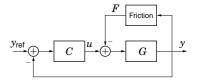
Pitfalls

Describing function analysis can give erroneous results.

- DF analysis may predict a limit cycle, even if it does not exist.
- A limit cycle may exist, even if DF analysis does not predict it.
- The predicted amplitude and frequency are only approximations and can be far from the true values.

Accuracy of Describing Function Analysis

Control loop with friction $F = \operatorname{sgn} y$:



Corresponds to

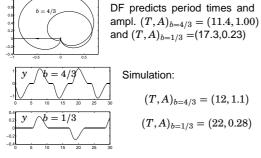
$$\frac{G}{1+GC} = \frac{s(s-b)}{s^3+2s^2+2s+1} \quad \text{with feedback} \quad u = -\text{sgn} \, y$$

The oscillation depends on the zero at s = b.

Accuracy of Describing Function Analysis

Analysis of Oscillations—A summary

There exist both time-domain and frequency-domain methods



Simulation:

$$(T, A)_{b=4/3} = (12, 1.1)$$

 $(T, A)_{b=1/3} = (22, 0.28)$

Accurate results only if y is sinusoidal!

Today's Goal

Rigorous results but hard to use for large problems

Poincaré maps and Lyapunov functions

Frequency-domain:

to analyze oscillations.

Time-domain:

- Describing function analysis
- Approximate results
- Powerful graphical methods

Next Lecture

- To be able to
 - Derive describing functions for static nonlinearities
 - Predict stability and existence of periodic solutions through describing function analysis
- Saturation and antiwindup compensation
- Lyapunov analysis of phase locked loops
- Friction compensation