Material

- ► Glad & Ljung Ch. 12.2
- ► Khalil Ch. 4.1-4.3
- Slotine and Li: Chapter 3 (not 3.5.2-3.5.3)
- Lecture notes

Alexandr Mihailovich Lyapunov (1857–1918)

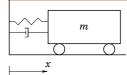
Master thesis "On the stability of ellipsoidal forms of equilibrium of rotating fluids," St. Petersburg University, 1884.

Doctoral thesis "The general problem of the stability of motion," 1892.

Examples

Start with a Lyapunov candidate V to measure e.g.,

- ► "size" of state and/or output error,
- "size" of deviation from true parameters,
- energy difference from desired equilibrium,
- weighted combination of above


Example of common choice in adaptive control

$$V = \frac{1}{2} \left(e^2 + \gamma_a \widetilde{a}^2 + \gamma_b \widetilde{b}^2 \right)$$

(here weighted sum of output error and parameter errors)

Often a magnitude measure or (squared) norm like $|e|_2^2,...$

A Motivating Example

$$m\ddot{x} = -\underbrace{b\dot{x}|\dot{x}|}_{\text{damping}} - \underbrace{k_0x - k_1x^3}_{\text{spring}}$$
 $b, k_0, k_1 > 0$

Total energy = kinetic + pot. energy: $V = \frac{mv^2}{2} + \int_0^x F_{spring} ds \Rightarrow$

$$V(x, \dot{x}) = m\dot{x}^2/2 + k_0x^2/2 + k_1x^4/4 > 0, \qquad V(0, 0) = 0$$

$$\begin{split} \frac{d}{dt}V(x,\dot{x}) &= m\ddot{x}\dot{x} + k_0x\dot{x} + k_1x^3\dot{x} = \{\text{plug in system dynamics}\,^2\} \\ &= -b|\dot{x}|^3 \quad < 0, \text{ for } \dot{x} \neq 0 \end{split}$$

What does this mean?

To be able to

- prove local and global stability of an equilibrium point using Lyapunov's method
- show stability of a set (e.g., an equilibrium, or a limit cycle) using La Salle's invariant set theorem.

Main idea

Lyapunov formalized the idea:

If the total energy is dissipated, then the system must be stable.

Main benefit: By looking at how an energy-like function V (a so called Lyapunov function) changes over time, we might conclude that a system is stable or asymptotically stable without solving the nonlinear differential equation.

Main question: How to find a Lyapunov function?

Analysis: Check if V is decreasing with time

 $\begin{tabular}{ll} \hline & Continuous time: & $\frac{dV}{dt} < 0$ \\ \hline & Discrete time: & $V(k+1) - V(k) < 0$ \\ \hline \end{tabular}$

Synthesis: Choose e.g. control law and/or parameter update law to satisfy $\dot{V} \leq 0$

$$\begin{split} \frac{dV}{dt} &= e\dot{e} + \gamma_a \widetilde{a} \dot{\widetilde{a}} + \gamma_b \widetilde{b} \dot{\widetilde{b}} = \\ &= \widetilde{x} (-a\widetilde{x} - \widetilde{a} \widehat{x} + \widetilde{b} u) + \gamma_a \widetilde{a} \dot{\widetilde{a}} + \gamma_b \widetilde{b} \dot{\widetilde{b}} = \dots \end{split}$$

If a is constant and $\tilde{a} = a - \hat{a}$ then $\dot{\tilde{a}} = -\dot{\hat{a}}$.

Choose update law $\frac{d\hat{a}}{dt}$ in a "good way" to influence $\frac{dV}{dt}$ (more on this later...)

Stability Definitions

An equilibrium point x = 0 of $\dot{x} = f(x)$ is

▶ locally stable, if for every R > 0 there exists r > 0, such

$$||x(0)|| < r \implies ||x(t)|| < R, t \ge 0$$

▶ locally asymptotically stable, if locally stable and

$$||x(0)|| < r \quad \Rightarrow \quad \lim_{t \to \infty} x(t) = 0$$

 globally asymptotically stable, if asymptotically stable for all $x(0) \in \mathbf{R}^n$.

²Also referred to evaluate "along system trajectories".

Lyapunov Theorem for Local Stability

Theorem Let $\dot{x}=f(x),\ f(0)=0$ where x=0 is in the interior of $\Omega\subset\mathbf{R}^n$. Assume that $V:\Omega\to\mathbf{R}$ is a \mathcal{C}^1 function. If

- (1) V(0) = 0
- (2) V(x) > 0, for all $x \in \Omega$, $x \neq 0$
- (3) $\dot{V}(x) \leq 0$ along all trajectories of **the system** in Ω
 - \implies x = 0 is locally stable.

Furthermore, if also

- (4) $\dot{V}(x) < 0$ for all $x \in \Omega, x \neq 0$
 - \implies x = 0 is locally asymptotically stable.

Conservation and Dissipation

Conservation of energy: $\dot{V}(x)=\frac{\partial V}{\partial x}f(x)=0$, i.e., the vector field f(x) is everywhere orthogonal to the normal $\frac{\partial V}{\partial x}$ to the level surface V(x)=c.

Example: Total energy of a lossless mechanical system or total fluid in a closed system.

Dissipation of energy: $\dot{V}(x)=\frac{\partial V}{\partial x}f(x)\leq 0$, i.e., the vector field f(x) and the normal $\frac{\partial V}{\partial x}$ to the level surface $\{z:\,V(z)=c\}$ make an obtuse angle (Sw. "trubbig vinkel").

Example: Total energy of a mechanical system with damping or total fluid in a system that leaks.

Boundedness:

For any trajectory x(t)

$$V(x(t)) = V(x(0)) + \int_0^t \dot{V}(x(\tau)) d\tau \le V(x(0))$$

which means that the whole trajectory lies in the set

$$\{z \mid V(z) \le V(x(0))\}$$

For stability it is thus important that the sublevel sets $\{z \mid V(z) \leq c\}$ bounded $\forall c \geq 0 \iff V(x) \to \infty$ as $||x|| \to \infty$.

Positive Definite Matrices

Definition: Symmetric matrix $M = M^T$ is

- **positive definite** (M > 0) if $x^T M x > 0, \forall x \neq 0$
- ▶ positive semidefinite $(M \ge 0)$ if $x^T M x \ge 0$, $\forall x$

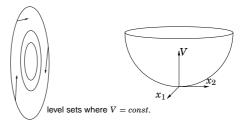
Lemma:

- $M = M^T > 0 \iff \lambda_i(M) > 0, \forall i$

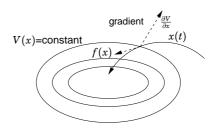
$$M = M^T > 0 \qquad V(x) := x^T M x$$

 $V(0) = 0, \quad V(x) > 0, \forall x \neq 0$

V(x) candidate Lyapunov function


Lyapunov Functions (≈ Energy Functions)

A function V that fulfills (1)–(3) is called a *Lyapunov function*. Condition (3) means that V is non-increasing along all


$$\dot{V}(x) = \frac{\partial V}{\partial x}\dot{x} = \sum_{i} \frac{\partial V}{\partial x_{i}} f_{i}(x) \le 0$$

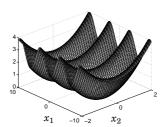
where
$$\frac{\partial V}{\partial x} = \left[\frac{\partial V}{\partial x_1}, \frac{\partial V}{\partial x_2}, \dots \frac{\partial V}{\partial x_n}\right]$$

trajectories in Ω :

Geometric interpretation

Vector field points into sublevel sets

Trajectories can only go to lower values of V(x)


2 min exercise—Pendulum

Show that the origin is locally stable for a mathematical pendulum.

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -\frac{g}{\ell}\sin x_1$$

Use as a Lyapunov function candidate

$$V(x) = (1 - \cos x_1)g\ell + \ell^2 x_2^2/2$$

More matrix results

• for symmetric matrix $M = M^T$

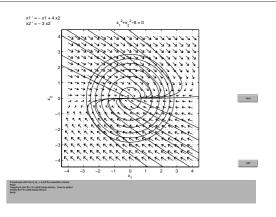
$$\lambda_{\min}(M) \|x\|^2 \leq x^T M x \leq \lambda_{\max}(M) \|x\|^2, \quad \forall x$$

Proof idea: factorize $M=U\Lambda U^T$, unitary U (i.e., $||Ux||=||x||\ \forall x$), $\Lambda=\mathrm{diag}(\lambda_1,\dots,\lambda_n)$

▶ for any matrix M

2

$$||Mx|| \leq \sqrt{\lambda_{\max}(M^T M)} ||x||, \quad \forall x$$


Example-Lyapunov function for linear system

$$\dot{x} = Ax = \begin{bmatrix} -1 & 4 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \tag{1}$$

Eigenvalues of A : $\{-1, -3\} \Rightarrow$ (global) asymptotic stability. Find a quadratic Lyapunov function for the system (??):

$$V(x) = x^T P x = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \quad P = P^T > 0$$

Take any $Q = Q^T > 0$, say $Q = I_{2\times 2}$. Solve $A^TP + PA = -Q$.

Phase plot showing that

$$V=rac{1}{2}(x_1^2+x_2^2)=egin{bmatrix} x_1 & x_2 \end{bmatrix} egin{bmatrix} 0.5 & 0 \ 0 & 0.5 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$
 does NOT work.

Lyapunov Stability for Linear Systems

Linear system: $\dot{x} = Ax$

Lyapunov equation: Let $Q = Q^T > 0$. Solve

$$PA + A^TP = -Q$$

with respect to the symmetric matrix P.

Lyapunov function: $V(x) = x^T P x$, \Rightarrow

$$\dot{V}(x) = x^T P \dot{x} + \dot{x}^T P x = x^T (PA + A^T P) x = -x^T Q x < 0$$

Asymptotic Stability: If $P=P^T>0$, then the Lyapunov Stability Theorem implies (local=global) asymptotic stability, hence the eigenvalues of A must satisfy $\operatorname{Re} \lambda_k(A)<0, \ \forall k$

Interpretation

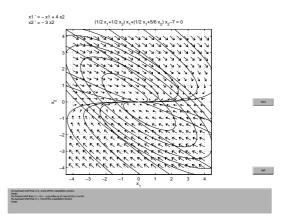
Assume $\dot{x} = Ax$, x(0) = z. Then

$$\int_0^\infty x^T(t)Qx(t)dt = z^T \left(\int_0^\infty e^{A^Tt}Qe^{At}dt\right)z = z^TPz$$

Thus $V(z) = z^T P z$ is the cost-to-go from z (with no input) and integral quadratic cost function with weighting matrix Q.

Example cont'd

$$A^T P + PA = -I$$


$$\begin{bmatrix} -1 & 0 \\ 4 & -3 \end{bmatrix} \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} + \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} \begin{bmatrix} -1 & 4 \\ 0 & -3 \end{bmatrix} =$$

$$\begin{bmatrix} -2p_{11} & -4p_{12} + 4p_{11} \\ -4p_{12} + 4p_{11} & 8p_{12} - 6p_{22} \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$(2)$$

Solving for p_{11} , p_{12} and p_{22} gives

$$\begin{aligned} 2p_{11} &= -1 \\ -4p_{12} + 4p_{11} &= 0 \\ 8p_{12} - 6p_{22} &= -1 \end{aligned}$$

$$\Longrightarrow \begin{bmatrix} p_{11} & p_{12} \\ p_{12} & p_{22} \end{bmatrix} = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 5/6 \end{bmatrix} > 0$$

Phase plot with level curves $x^T P x = c$ for P found in example.

Converse Theorem for Linear Systems

If $\operatorname{Re}\lambda_k(A)<0\ \forall k$, then for every $Q=Q^T>0$ there exists $P=P^T>0$ such that $PA+A^TP=-Q$

Proof: Choose
$$P = \int_0^\infty e^{A^Tt}Qe^{At}dt$$
. Then
$$A^TP + PA = \lim_{t \to \infty} \int_0^t \left(A^Te^{A^T\tau}Qe^{A\tau} + e^{A^T\tau}QAe^{A\tau}\right)d\tau$$

$$= \lim_{t \to \infty} \left[e^{A^T\tau}Qe^{A\tau}\right]_0^t$$

Lyapunov's Linearization Method

Recall from Lecture 2:

Theorem Consider

$$\dot{x} = f(x)$$

Assume that f(0) = 0. Linearization

$$\dot{x} = Ax + g(x)\,, \qquad ||g(x)|| = o(||x||) \text{ as } x \to 0\,.$$

- (1) Re $\lambda_k(A) < 0, \ \forall k \quad \Rightarrow \quad x = 0$ locally asympt. stable
- (2) $\exists k : \operatorname{Re} \lambda_k(A) > 0 \Rightarrow x = 0$ unstable

Proof of (1) in Lyapunov's Linearization Method

Put $V(x) := x^T P x$. Then, V(0) = 0, $V(x) > 0 \ \forall x \neq 0$, and

$$\dot{V}(x) = x^{T} P f(x) + f^{T}(x) P x$$

$$= x^{T} P [Ax + g(x)] + [x^{T} A^{T} + g^{T}(x)] P x$$

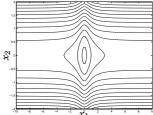
$$= x^{T} (PA + A^{T} P) x + 2x^{T} P g(x) = -x^{T} Q x + 2x^{T} P g(x)$$

$$x^T Q x \ge \lambda_{\min}(Q) ||x||^2$$

and for all $\gamma > 0$ there exists r > 0 such that

$$||g(x)|| < \gamma ||x||, \qquad \forall ||x|| < r$$

Thus, choosing γ sufficiently small gives


$$\dot{V}(x) \le -\big(\lambda_{\min}(Q) - 2\gamma\lambda_{\max}(P)\big)\|x\|^2 < 0$$

Radial Unboundedness is Necessary

If the condition $V(x)\to\infty$ as $\|x\|\to\infty$ is not fulfilled, then global stability cannot be guaranteed.

Example Assume $V(x) = x_1^2/(1+x_1^2) + x_2^2$ is a Lyapunov function for a system. Can have $||x|| \to \infty$ even if $\dot{V}(x) < 0$.

Contour plot V(x) = C:

Example [Khalil]:

$$\dot{x}_1 = \frac{-6x_1}{(1+x_1^2)^2} + 2x_2$$

$$\dot{x}_2 = \frac{-2(x_1 + x_2)}{(1+x_2)^2}$$

Proof Idea

Assume $x(t) \neq 0$ (otherwise we have $x(\tau) = 0$ for all $\tau > t$). Then

$$\frac{\dot{V}(x)}{V(x)} \le -\alpha$$

Integrating from 0 to t gives

$$\log V(x(t)) - \log V(x(0)) \le -\alpha t \implies V(x(t)) \le e^{-\alpha t} V(x(0))$$

Hence, $V(x(t)) \to 0$, $t \to \infty$.

Using the properties of *V* it follows that $x(t) \to 0$, $t \to \infty$.

LaSalle's Invariant Set Theorem

Theorem Let $\Omega\subseteq \mathbf{R}^n$ compact invariant set for $\dot{x}=f(x)$. Let $V:\Omega\to\mathbf{R}$ be a \mathcal{C}^1 function such that $\dot{V}(x)\leq 0,\ \forall x\in\Omega,$ $E:=\{x\in\Omega:\dot{V}(x)=0\},\ M:=$ largest invariant subset of E \Longrightarrow $\forall x(0)\in\Omega,\ x(t)$ approaches M as $t\to+\infty$

Note that *V* must **not** be a positive definite function in this case.

Lyapunov Theorem for Global Asymptotic Stability

Theorem Let $\dot{x} = f(x)$ and f(0) = 0. If there exists a C^1 function $V : \mathbf{R}^n \to \mathbf{R}$ such that

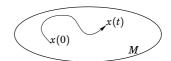
- (1) V(0) = 0
- (2) V(x) > 0, for all $x \neq 0$
- (3) $\dot{V}(x) < 0$ for all $x \neq 0$
- (4) $V(x) \to \infty$ as $||x|| \to \infty$

then x = 0 is globally asymptotically stable.

Somewhat Stronger Assumptions

Theorem: Let $\dot{x}=f(x)$ and f(0)=0. If there exists a \mathcal{C}^1 function $V:\mathbb{R}^n\to\mathbb{R}$ such that

- (1) V(0) = 0
- (2) V(x) > 0 for all $x \neq 0$
- (3) $\dot{V}(x) \leq -\alpha V(x)$ for all x
- (4) $V(x) \rightarrow \infty$ as $||x|| \rightarrow \infty$


then x = 0 is globally **exponentially** stable.

Invariant Sets

Definition: A set M is called **invariant** if for the system

$$\dot{x} = f(x),$$

 $x(0) \in M$ implies that $x(t) \in M$ for all $t \ge 0$.

Special Case: Global Stability of Equilibrium

Theorem: Let $\dot{x} = f(x)$ and f(0) = 0. If there exists a C^1 function $V : \mathbb{R}^n \to \mathbb{R}$ such that

- (1) V(0) = 0, V(x) > 0 for all $x \neq 0$
- (2) $\dot{V}(x) \leq 0$ for all x
- (3) $V(x) \to \infty$ as $||x|| \to \infty$
- (4) The only solution of $\dot{x} = f(x)$, $\dot{V}(x) = 0$ is $x(t) = 0 \ \forall t$
- \implies x = 0 is globally asymptotically stable.

A Motivating Example (cont'd)

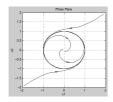
$$\begin{split} m\ddot{x} &= -b\dot{x}|\dot{x}| - k_0x - k_1x^3 \\ V(x) &= (2m\dot{x}^2 + 2k_0x^2 + k_1x^4)/4 > 0, \qquad V(0,0) = 0 \\ \dot{V}(x) &= -b|\dot{x}|^3 \end{split}$$

Assume that there is a trajectory with $\dot{x}(t) = 0$, $x(t) \neq 0$. Then

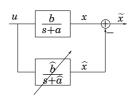
$$\frac{d}{dt}\dot{x}(t) = -\frac{k_0}{m}x(t) - \frac{k_1}{m}x^3(t) \neq 0,$$

which means that $\dot{x}(t)$ can not stay constant.

Hence, $\dot{V}(x) = 0 \iff x(t) \equiv 0$, and LaSalle's theorem gives global asymptotic stability.


Example—Stable Limit Cycle

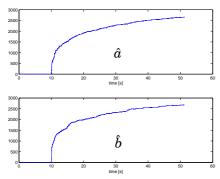
$$E = \{x \in \Omega : \dot{V}(x) = 0\} = \{x : ||x|| = 1\}$$


M = E is an invariant set, because

$$\frac{d}{dt}V = -2(x_1^2 + x_2^2 - 1)(x_1^2 + x_2^2) = 0 \quad \text{for } x \in M$$

We have shown that M is a asymtotically stable limit cycle (globally stable in $R-\{0\}$)

Adaptive Noise Cancellation by Lyapunov Design


$$\dot{x} + ax = bu$$

$$\dot{\hat{x}} + \hat{a}\hat{x} = \hat{b}u$$

Introduce $\widetilde{x} = x - \widehat{x}$, $\widetilde{a} = a - \widehat{a}$, $\widetilde{b} = b - \widehat{b}$.

Want to design adaptation law so that $\tilde{x} \to 0$

Results

Estimation of parameters starts at t=10 s.

Example—Stable Limit Cycle

Show that $M = \{x : ||x|| = 1\}$ is a asymptotically stable limit cycle for (almost globally, except for starting at x=0):

$$\dot{x}_1 = x_1 - x_2 - x_1(x_1^2 + x_2^2)$$

$$\dot{x}_2 = x_1 + x_2 - x_2(x_1^2 + x_2^2)$$

Let
$$V(x) = (x_1^2 + x_2^2 - 1)^2$$
.

$$\begin{split} \frac{dV}{dt} &= 2(x_1^2 + x_2^2 - 1)\frac{d}{dt}(x_1^2 + x_2^2 - 1) \\ &= -2(x_1^2 + x_2^2 - 1)^2(x_1^2 + x_2^2) \leq 0 \quad \text{for } x \in \Omega \end{split}$$

 $\Omega = \{0 < ||x|| \le R\}$ is invariant for R = 1.

A Motivating Example (revisited)

$$\begin{split} m\ddot{x} &= -b\dot{x}|\dot{x}| - k_0x - k_1x^3 \\ V(x,\dot{x}) &= (2m\dot{x}^2 + 2k_0x^2 + k_1x^4)/4 > 0, \qquad V(0,0) = 0 \\ \dot{V}(x,\dot{x}) &= -b|\dot{x}|^3 \text{ gives } E = \{(x,\dot{x}): \dot{x} = 0\}. \end{split}$$

Assume there exists $(\bar{x}, \dot{\bar{x}}) \in M$ such that $\bar{x}(t_0) \neq 0$. Then

$$m\ddot{x}(t_0) = -k_0\bar{x}(t_0) - k_1\bar{x}^3(t_0) \neq 0$$

so $\dot{x}(t_0+) \neq 0$ so the trajectory will immediately leave M . A contradiction to that M is invariant.

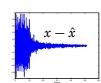
Hence, $M = \{(0,0)\}$ so the origin is asymptotically stable.

Let us try the Lyapunov function

$$\begin{split} V &= \frac{1}{2} (\widetilde{x}^2 + \gamma_a \widetilde{a}^2 + \gamma_b \widetilde{b}^2) \\ \dot{V} &= \widetilde{x} \widetilde{x} + \gamma_a \widetilde{a} \widetilde{a} + \gamma_b \widetilde{b} \widetilde{b} = \\ &= \widetilde{x} (-a \widetilde{x} - \widetilde{a} \widehat{x} + \widetilde{b} u) + \gamma_a \widetilde{a} \widetilde{a} + \gamma_b \widetilde{b} \widetilde{b} = -a \widetilde{x}^2 \end{split}$$

where the last equality follows if we choose

$$\hat{a} = -\hat{a} = \frac{1}{\gamma_a} \tilde{x} \hat{x}$$
 $\hat{b} = -\hat{b} = -\frac{1}{\gamma_b} \tilde{x} u$


Invariant set: $\tilde{x} = 0$.

This proves that $\widetilde{x} \to 0$.

(The parameters \widetilde{a} and \widetilde{b} do not necessarily converge: $u \equiv 0$.)

Demonstration if time permits

Results

Estimation of parameters starts at t=10 s.

Next Lecture	http://www.math.spbu.ru/NDA2007/en/ International Congress Vacalinear Dynamical Analysis. 2007. L. http://www.math.spbu.nt/NDA207/en/
► Stability analysis using input-output (frequency) methods	International Congress "Nonlinear Dynamical Analysis - 2007" defloated in the 18th authors of Academician AMAsyguane 2807 Jane 4.8 Romin Academy of Sciences Scientific Committee of the Congress Indian evolution in Amountment Prolinear registration for American Amountment Prolinear registration for Amountment Prolinear registration for Amountment Amiliarian for participation & Abstract Scientific Committee of the Congress Scientific Committee Scient
	Vec-chier V. A. Pine (Bensu). N. V. Abeller (Bensu). A. A. Abimov (Kazakhatan). V. V. Beleisky (Russin). P. Brene (France). N. V. A. Beller (Bensu). A. A. A. Abimov (Kazakhatan). V. V. Beleisky (Russin). P. Brene (France). S. V. Bassiller. V. E. Veterteemov (Bensu). V. Vejice (Papathenia). A. V. Karapetjan. D. M. Klimov. P. S. Karalinkov. V. V. Flegastyer, C. A. Clemov (Bensu). S. Lefel. (USA). A. M. Ignov. A. M. Marcenko, I. V. Mennov (Russu). H. Mjogi (Jupan). N. Mercoov, Yu. S. Ospov (Bunsu). M. Brened. A. M. Brened. A. V. Brenedinston. I. A. Benedinston. (Bassille A. V. Standardov, P. Ritsensk).