- Phase-plane analysis
- Classification of singularities
- ► Stability of periodic solutions

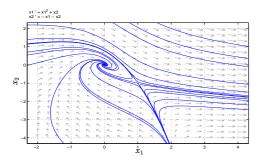
Material

- ▶ Glad and Ljung: Chapter 13
- ▶ Slotine and Li: Chapter 2 (except the isocline method and Section 2.6)
- ► Khalil: Chapter 2.1–2.3
- Lecture notes

First glipse of phase plane portraits: Consider the system

$$\dot{x}_1 = x_1^2 + x_2$$

$$\dot{x}_2 = -x_1 - x_2$$



Flow-interpretation: To each point (x_1, x_2) in the plane there is an associated flow-direction $\frac{dx}{dt} = f(x_1, x_2)$

Linear Systems Revival

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Analytic solution: $x(t) = e^{At}x(0)$.

If A is diagonalizable, then

$$e^{At} = Ve^{\Lambda t}V^{-1} = \begin{bmatrix} v_1 & v_2 \end{bmatrix} \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix}^{-1}$$

where v_1, v_2 are the eigenvectors of A $(Av_1 = \lambda_1 v_1 \text{ etc}).$

Matlab:

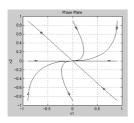
» [V,Lambda]=eig(A)

Example—Stable Node

$$\dot{x} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} x$$

$$(\lambda_1,\lambda_2)=(-1,-2)$$
 and $\begin{bmatrix} v_1 & v_2 \end{bmatrix}=\begin{bmatrix} 1 & -1 \ 0 & 1 \end{bmatrix}$

 v_1 is the slow direction and v_2 is the fast.



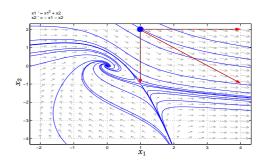
You should be able to

- sketch phase portraits for two-dimensional systems
- classify equilibria into nodes, focus, saddle points, and center points.
- analyze limit cycles through Poincaré maps

First glipse of phase plane portraits: Consider the system

$$\dot{x}_1 = x_1^2 + x_2$$

$$\dot{x}_2 = -x_1 - x_2$$



In the point $(x_1, x_2) = (1, 2)$ the vector field is pointing in the direction $(1^2 + 2, -1 - 2) = (3, -3)$.

Example: Two real negative eigenvalues

Given the eigenvalues $\underbrace{\lambda_1}_{\text{faster}} < \underbrace{\lambda_2}_{\text{slower}} < 0$, with corresponding eigenvectors v_1 and v_2 , respectively.

Solution: $x(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$

Fast eigenvalue/vector: $x(t) \approx c_1 e^{\lambda_1 t} v_1 + c_2 v_2$ for small t. Moves along the fast eigenvector for small t

Slow eigenvalue/vector: $x(t) \approx c_2 e^{\lambda_2 t} v_2$ for large t. Moves along the slow eigenvector towards x = 0 for large t

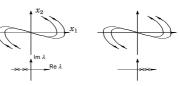
Equilibrium Points for Linear Systems

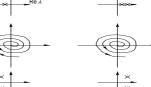
 $\mathrm{Im}\lambda_i=0$: $\lambda_1, \lambda_2 < 0$

 $\text{Re}\lambda_i < 0$ $\text{Im}\lambda_i \neq 0$: stable focus unstable node $\lambda_1, \lambda_2 > 0$

saddle point $\lambda_1 < 0 < \lambda_2$

 $\text{Re}\lambda_i > 0$ unstable focus $Re\lambda_i = 0$





Example—Unstable Focus

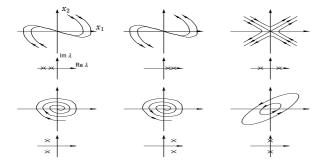
$$\begin{split} \dot{x} &= \begin{bmatrix} \sigma & -\omega \\ \omega & \sigma \end{bmatrix} x, \qquad \sigma, \omega > 0, \qquad \lambda_{1,2} = \sigma \pm i\omega \\ x(t) &= e^{At} x(0) = \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix} \begin{bmatrix} e^{\sigma t} e^{i\omega t} & 0 \\ 0 & e^{\sigma t} e^{-i\omega t} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -i & i \end{bmatrix}^{-1} x(0) \end{split}$$

In polar coordinates $r=\sqrt{x_1^2+x_2^2},\,\theta=\arctan x_2/x_1$ $(x_1=r\cos\theta,\,x_2=r\sin\theta)$:

$$\dot{r} = \sigma r$$

$$\dot{\theta} = \omega$$

Equilibrium Points for Linear Systems



Linear Time-Varying Systems (warning)

Warning: Pointwise "Left Half-Plane eigenvalues" of A(t) (i.e., time-varying systems) do NOT impose stability!!!

$$A(t) = \left(\begin{array}{cc} -1 + \alpha \cos^2 t & 1 - \alpha \sin t \cos t \\ -1 - \alpha \sin t \cos t & -1 + \alpha \sin^2 t \end{array} \right), \quad \alpha > 0$$

Pointwise eigenvalues are given by

$$\lambda(t) = \lambda = \frac{\alpha - 2 \pm \sqrt{\alpha^2 - 4}}{2}$$

which are in the LHP for $0 < \alpha < 2$ (and here even constant). However

$$x(t) = \begin{pmatrix} e^{(\alpha-1)t}\cos t & e^{-t}\sin t \\ -e^{(\alpha-1)t}\sin t & e^{-t}\cos t \end{pmatrix} x(0),$$

which is an unbounded solution for $\alpha > 1$.

How to Draw Phase Portraits

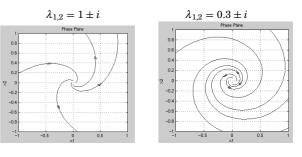
If done by hand then

- 1. Find equilibria (also called singularities)
- 2. Sketch local behavior around equilibria
- 3. Sketch (\dot{x}_1, \dot{x}_2) for some other points. Use that $\frac{dx_1}{dx_2} = \frac{\dot{x}_1}{\dot{x}_2}$.
- 4. Try to find possible limit cycles
- 5. Guess solutions

Matlab: pptool6/pptool7, dfield6/dfield7, dee, ICTools, etc.

PPTool and some other tools for Matlab is available on or via http://www.control.lth.se/course/FRTN05

Example- unstable focus cont'd



4 minute exercise

What is the phase portrait if $\lambda_1 = \lambda_2$?

Hint: For $\lambda_1=\lambda_2=\lambda$ there are two different cases: only one linearly independent eigenvector or all vectors are eigenvectors

Phase-Plane Analysis for Nonlinear Systems

Close to equilibria "nonlinear system" ≈ "linear system".

Theorem Assume

$$\dot{x} = f(x)$$

is linearized at x_0 so that

$$\dot{x} = Ax + g(x),$$

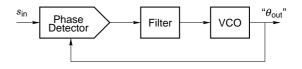
where $g \in C^1$ and $\frac{g(x) - g(x_0)}{\|x - x_0\|} \to 0$ as $x \to x_0$.

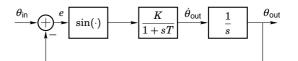
If $\dot{z}=Az$ has a focus, node, or saddle point, then $\dot{x}=f(x)$ has the same type of equilibrium at the origin.

If the linearized system has a center, then the nonlinear system has either a center or a focus.

Phase-Locked Loop

A PLL tracks phase $\theta_{in}(t)$ of a signal $s_{in}(t) = A \sin[\omega t + \theta_{in}(t)]$.





Singularity Analysis of PLL

Let $x_1(t) = \theta_{\text{out}}(t)$ and $x_2(t) = \dot{\theta}_{\text{out}}(t)$. Assume K, T > 0 and $\theta_{\text{in}}(t) = \theta_{\text{in}}$ constant.

$$\dot{x}_1 = x_2$$

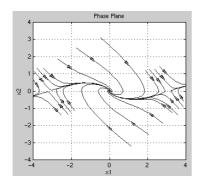
$$\dot{x}_2 = -T^{-1}x_2 + KT^{-1}\sin(\theta_{\text{in}} - x_1)$$

Singularities are $(\theta_{in} + n\pi, 0)$, since

$$\begin{split} \dot{x}_1 &= 0 \Rightarrow x_2 = 0 \\ \dot{x}_2 &= 0 \Rightarrow \sin(\theta_{in} - x_1) = 0 \Rightarrow x_1 = \theta_{\mathsf{in}} + n\pi \end{split}$$

Phase-Plane for PLL

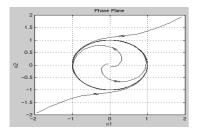
K=1/2, T=1: Focus $(2k\pi,0)$, saddle points $((2k+1)\pi,0)$



Periodic Solutions: x(t+T) = x(t)

Example of an asymptotically stable periodic solution:

$$\dot{x}_1 = x_1 - x_2 - x_1(x_1^2 + x_2^2)
\dot{x}_2 = x_1 + x_2 - x_2(x_1^2 + x_2^2)$$
(1)



A system has a **periodic solution** if for some T>0

$$x(t+T) = x(t), \quad \forall t \ge 0$$

Note that a constant value for x(t) by convention not is regarded as periodic.

- ▶ When does a periodic solution exist?
- When is it locally (asymptotically) stable? When is it globally asymptotically stable?

Singularity Classification of Linearized System

Linearization gives the following characteristic equations:

n even:

$$\lambda^2 + T^{-1}\lambda + KT^{-1} = 0$$

$$K > (4T)^{-1}$$
 gives stable focus $0 < K < (4T)^{-1}$ gives stable node

 \underline{n} odd:

$$\lambda^2 + T^{-1}\lambda - KT^{-1} = 0$$

Saddle points for all K, T > 0

Summary

Phase-plane analysis limited to second-order systems (sometimes it is possible for higher-order systems to fix some states)

Many dynamical systems of order three and higher not fully understood (chaotic behaviors etc.)

Periodic solution: Polar coordinates.

 $r_{-} = r \cos \theta \rightarrow$

 $x_1 = r\cos\theta \quad \Rightarrow dx_1 = \cos\theta dr - r\sin\theta d\theta$

 $x_2 = r \sin \theta$ $\Rightarrow dx_2 = \sin \theta dr + r \cos \theta d\theta$

 \Rightarrow

Let

 $\left(\begin{array}{c} \dot{r} \\ \dot{\theta} \end{array} \right) = \frac{1}{r} \left(\begin{array}{cc} r\cos\theta & r\sin\theta \\ -\sin\theta & \cos\theta \end{array} \right) \left(\begin{array}{c} \dot{x}_1 \\ \dot{x}_2 \end{array} \right)$

Now

 $\dot{x}_1 = r(1 - r^2)\cos\theta - r\sin\theta$

$$\dot{x}_2 = r(1 - r^2)\sin\theta + r\cos\theta$$

which gives

$$\dot{r}=r(1-r^2)$$

$$\dot{\theta} = 1$$

Only r=1 is a stable equilibrium!

Poincaré map ("Stroboscopic map")

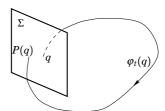
$$\dot{x} = f(x), \qquad x \in \mathbf{R}^n$$

 $\varphi_t(q)$ is the solution starting in q after time t.

 $\Sigma \subset \mathbf{R}^{n-1}$ is a hyperplane transverse to φ_t .

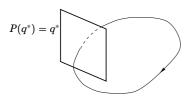
The Poincaré map $P: \Sigma \to \Sigma$ is

 $P(q) = \varphi_{\tau(q)}(q), \qquad \tau(q)$ is the first return time



Limit Cycles

If a simple periodic orbit pass through q^* , then $P(q^*)=q^*$. Such an orbit is called a *limit cycle*. q^* is called a *fixed point* of P.



Does the iteration $q_{k+1} = P(q_k)$ converge to q^* ?

Linearization Around a Periodic Solution

The linearization of

$$\dot{x}(t) = f(x(t))$$

around $x_0(t) = x_0(t+T)$ is

$$\dot{\tilde{x}}(t) = A(t)\tilde{x}(t)$$

$$A(t) = \frac{\partial f}{\partial x}(x_0(t)) = A(t+T)$$

P is the map from the solution at t = 0 to $t = \tau(q)$.

Example—Stable Unit Circle

The Poincaré map is

$$P(r_0) = [1 + (r_0^{-2} - 1)e^{-2 \cdot 2\pi}]^{-1/2}$$

 $r_0 = 1$ is a fixed point.

The limit cycle that corresponds to r(t)=1 and $\theta(t)=t$ is locally asymptotically stable, because

$$W = \frac{dP}{dr_0}(1) = \left[e^{-4\pi}\right]$$

and

$$|W|=\left|\frac{dP}{dr_0}(1)\right|=|e^{-4\pi}|<1$$

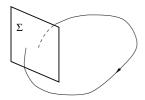
The Hand Saw—Poincaré Map

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = \frac{1}{\ell} \left(g + a\omega^2 \sin x_3 \right) \sin x_1$$

$$\dot{x}_3(t) = \omega$$

Choose $\Sigma = \{x_3 = 2\pi k\}.$



Locally Stable Limit Cycles

The linearization of P around q^* gives a matrix $W = \frac{\partial P}{\partial q}\Big|_{q^*}$ so

$$(q_{k+1} - q^*) \approx W(q_k - q^*),$$

if q_k is close to q^* .

- ▶ If all $|\lambda_i(W)| < 1$, then the corresponding limit cycle is locally **asymptotically stable**.
- ▶ If $|\lambda_i(W)| > 1$, then the limit cycle is **unstable**.

Example—Stable Unit Circle

Rewrite (1) in polar coordinates:

$$\dot{r} = r(1 - r^2)$$

$$\dot{\theta} = 1$$

Choose $\Sigma = \{(r, \theta) : r > 0, \theta = 2\pi k\}.$

The solution is

$$\varphi_t(r_0, \theta_0) = \left([1 + (r_0^{-2} - 1)e^{-2t}]^{-1/2}, t + \theta_0 \right)$$

First return time from any point $(r_0, \theta_0) \in \Sigma$ is $\tau(r_0, \theta_0) = 2\pi$.

Example—The Hand Saw

Can we stabilize the inverted pendulum by vertical oscillations?

The Hand Saw-Poincaré Map

 $q^*=0$ and $T=2\pi/\omega$. No explicit expression for P. It is, however, easy to determine W numerically. Do two (or preferably many more) different simulations with different, small, initial conditions x(0)=y and x(0)=z. Solve W through (least squares solution of)

$$\left(x(T)\Big|_{x(0)=y} \quad x(T)\Big|_{x(0)=z}\right) = W\left(y \quad z\right)$$

This gives for a=1cm, $\ell=17$ cm, $\omega=180$

$$W = \begin{pmatrix} 1.37 & 0.035 \\ -3.86 & 0.630 \end{pmatrix}$$

which has eigenvalues (1.047, 0.955). Unstable.

W is stable for $\omega > 183$

The Hand Saw—Stability Condition

Make the assumptions that

$$\ell\gg a$$
 and $a\omega^2\gg g$

Then some calculations show that the Poincaré map is stable at $q^{\ast}=0$ when

$$\omega > \frac{\sqrt{2g\ell}}{a}$$

 $a=1~\mathrm{cm}$ and $\ell=17~\mathrm{cm}$ give $\omega>182.6~\mathrm{rad/s}$ (29 Hz).

Next Lecture

▶ Lyapunov methods for stability analysis

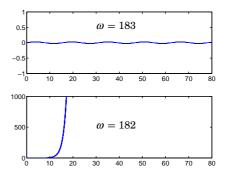
Lyapunov generalized the idea of: If the total energy is dissipated along the trajectories (i.e the solution curves), the system must be stable.

Benefit: Might conclude that a system is stable or asymptotically stable **without solving** the nonlinear differential equation.

Nonlinear control is a serious business... cheer up ®

The Hand Saw—Simulation

Simulation results give good agreement



Lab 1

