@ Phase-plane analysis
@ Classification of singularities
@ Stability of periodic solutions

Material

@ Glad and Ljung: Chapter 13

@ Slotine and Li: Chapter 2 (except the isocline method and
Section 2.6)

@ Khalil: Chapter 2.1-2.3
@ Lecture notes
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Today’s Goal

You should be able to

@ sketch phase portraits for two-dimensional systems

@ classify equilibria into nodes, focus, saddle points, and
center points.

@ analyze limit cycles through Poincaré maps
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First glipse of phase plane portraits: Consider the system

x1=x%+x2

Xg = —X1 — X2
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First glipse of phase plane portraits: Consider the system

x1=x%+x2

Xg = —X1 — X2

x1'=x1% + x2
x2'==-x1-x2

Flow-interpretation: To each point (x1, x2) in the plane there is
an associated flow-direction % = f(x1,%2)
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Vectorfields in Oceanography ...

HOW ONE MAN'S OBSESSION WITH
RUNAWAY SNEAKERS AND RUBBER DUCKS
REVOLUTIONIZED OCEAN SCIENCE

» —

wgukrﬁsﬁh,l]gs,meyer&xﬁﬁc Scigliano

On 10 January 1992, during
a storm in the North Pacific
Ocean close to the Interna-
tional Date Line, twelve 40-foot
(13.3 m) intermodal contain-
ers were washed overboard.
One of these containers held
28,800 Floatees,...

http://en.wikipedia.org/wiki/Friendly_Floatees
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First glipse of phase plane portraits: Consider the system

xlzx%+x2

Xg = —X1 — X2

x1'=x1% +x2
x2'=-x1-x2

In the point (x1, x2) = (1, 2) the vector field is pointing in the
direction (12 + 2, —1 —2) =(3, —3).
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Linear Systems Revival
d X1| _ X1
i o] =25

Analytic solution:  x(t) = eAx(0).

If A is diagonalizable, then

At 0 _
R e TR A [

where vy, vo are the eigenvectors of A (Avy = Aqv; ete).

Matlab:
» [V,Lambdal=eig(A)
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Example: Two real negative eigenvalues

Given the eigenvalues 4; < A < 0, with corresponding
~ =~

] faster  slower
eigenvectors vy and vq, respectively.

Solution: x(t) = creMtuy + coettuy

Fast eigenvalue/vector: x(t) ~ c1et1tvy + cqug for small £.
Moves along the fast eigenvector for small ¢

Slow eigenvalue/vector: x(t) ~ cge2tv, for large t.
Moves along the slow eigenvector towards x = 0 for large ¢
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Example—Stable Node

(A, A2) = (—1,—2) and [vg UQ}:B —11}

v7 is the slow direction and vy is the fast.

Phase Plane
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Equilibrium Points for Linear Systems

stable node unstable node saddle point
ImA; =0: A1,A9 <0 A1,A2 >0 A1 <0< Ay
ImA; #0: Rel; <0 Red; >0 ReAd; =0
stable focus unstable focus center point
X2
Im A
Re 4 oo <

TN

== == e
NE2 = 7 g
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Example—Unstable Focus

x=|:6 _w]x, o,0 >0, Ao =0 +iw
(0] (o} ?
1 1] [eotei® 0 1 1"
At v _
x(t) =e x(O) T |:—l l:| |: 0 eo‘te—m)t:| |:—l l:| x(O)

In polar coordinates r = \/m 0 = arctanxp/x;
(x1 = rcos 8, xo = rsin6):

r=or

6=w
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Example- unstable focus cont’d

11,2=1:|:i

Fhase Flane

A2 =03=%i

Fhase Flane
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Equilibrium Points for Linear Systems

stable node unstable node saddle point
ImA; =0: A1,A9 <0 A1,A2 >0 A1 <0< Ay
ImA; #0: Rel; <0 Red; >0 ReAd; =0
stable focus unstable focus center point
X2
Im A
Re 4 oo <

TN

== == e
NE2 = 7 g
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4 minute exercise

What is the phase portrait if A, = A2?

Hint: For 1; = A5 = A there are two different cases: only one
linearly independent eigenvector or all vectors are eigenvectors
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Star Node or Multi-Tangent Node

Case I: If

. _ |4 0 _
= {0 A] x, rank (A1 —A) =0
then the solution is

x1(£) = x1(0)e?t
xo(t) = x9(0)e™

Phase plane
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One Tangent Node

Case II: If

. A1
= [0 /1] x, rank (A1 —A) =1

then the solution is
x1(t) = x1(0)e* + txz(0)e?

x9(t) = x9(0)e?t

There is only one eigenvector: v; = avg = [1 O}T.

Phase plane

-2
2 -5 -4 05 0 05 1 1§ 2
xl
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Linear Time-Varying Systems (warning)

Warning: Pointwise “Left Half-Plane eigenvalues” of A(t)
(i.e., time-varying systems) do NOT impose stability!!!

—1+acos?t 1—asintcost
A(t) = . .
() (—l—asmtcost —1+ asin’®t )’ %=

Pointwise eigenvalues are given by

_a—-2xVaZ-4

A= 5

which are in the LHP for 0 < a < 2 (and here even constant).
However,

(a—1)t —t o3
e cost e 'sint
*() = < —e@Digint e cost > *(0),

which is an unbounded solution for o > 1.
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Phase-Plane Analysis for Nonlinear Systems

Close to equilibria “nonlinear system” ~ “linear system”.

Theorem Assume

x = f(x)
is linearized at x( so that
x=Ax + g(x),
where g € C! andw—was:c—wco.

[le—2oll

If 2= Az has a focus, node, or saddle point, then x = f(x) has
the same type of equilibrium at the origin.

If the linearized system has a center, then the nonlinear system
has either a center or a focus.
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How to Draw Phase Portraits

If done by hand then

© Find equilibria (also called singularities)
@ Sketch local behavior around equilibria
© Sketch (i1, %2) for some other points. Use that g—j‘é = 4.

@ Try to find possible limit cycles
© Guess solutions

Matlab: pptool6/pptool7, dfield6/dfield7, dee, ICTools,
etc.

PPTool and some other tools for Matlab is available on or via

http://www.control.lth.se/course/FRTNO5
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Phase-Locked Loop

A PLL tracks phase 6i,(t) of a signal si,(t) = A sin[wt + 6in(2)].

Sin ueout"
_ | Phase > o Ei
e Filter VCO

Oout

Oin e . K éout
O~ sin0) 1+sT

% |-
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Singularity Analysis of PLL

Assume K, T > 0 and 6;(t) = 6;, constant.

.72?1 = X2
X9 = —T_1x2 + KT ! sin(Oin — xl)

Singularities are (6, + nx,0), since

X1=0=>x=0
%9 =0 =sin(0;, —x1) = 0= x1 = O, +nx
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Singularity Classification of Linearized System

Linearization gives the following characteristic equations:

n even.
A+TA+KT1=0

K > (4T)~! gives stable focus
0 < K < (4T)~! gives stable node

n odd:
AM+TIA—KT1=0

Saddle points forall K, T > 0
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Phase-Plane for PLL

K =1/2, T = 1: Focus (2kr,0), saddle points ((2& + 1)x,0)

Fhase Flane
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Phase-plane analysis limited to second-order systems
(sometimes it is possible for higher-order systems to fix some
states)

Many dynamical systems of order three and higher not fully
understood (chaotic behaviors etc.)
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Periodic Solutions:  x(t+ T') = x(¢)

Example of an asymptotically stable periodic solution:

) 2 2
X1 = %1 — x9 — x1(x7 + x5)
1)

kg = X1 + X2 — x2(x] + x3)

Fhase Flane

FRTNO5 — Lecture 3 Automatic Control LTH, Lund University



Periodic solution: Polar coordinates.

Let
x1=rcos@ = dx; =cosOdr—rsinfdo
X9 =rsinf® = dxe = sinOdr + r cos 0d6
#\_1( rcos@ rsiné %1
0 /] r\ —sinf® cos6 X9
Now
%1 =r(1—r?)cos@ —rsin@
%9 =r(1—r?)sinf +rcos
which gives
F=r(l-r?
=1

Only r = 1 is a stable equilibrium!
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A system has a periodic solution if forsome T' > 0

x(t+T)=x(t), Vt>0

Note that a constant value for x(¢) by convention not is
regarded as periodic.

@ When does a periodic solution exist?

@ When is it locally (asymptotically) stable? When is it
globally asymptotically stable?
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Poincaré map (“Stroboscopic map”)

x = f(x), x € R
¢:(q) is the solution starting in g after time ¢.
¥ C R*!is a hyperplane transverse to ¢;.
The Poincaré map P: X —» X is
P(q) = ¢:(q)(9), 7(q) is the first return time

?:(q)
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Limit Cycles

If a simple periodic orbit pass through ¢*, then P(q¢*) = q".

Such an orbit is called a limit cycle.
g* is called a fixed point of P.

P(q") = ¢

Does the iteration gz.1 = P(q%) converge to ¢*?
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Locally Stable Limit Cycles

The linearization of P around g* gives a matrix W = % o)

q*
(@r+1— ") = Wigr — q°),
if g5, is close to g¢*.

@ Ifall |[4;(W)| < 1, then the corresponding limit cycle is
locally asymptotically stable

@ If [1;(W)| > 1, then the limit cycle is unstable .
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Linearization Around a Periodic Solution

The linearization of

x(t) = f(x(2))

around xo(t) = xo(¢+ T) is
X(t) =
A(t) =

(@)

o
O (xo(t)) = A +T)

P is the map from the solution at ¢t = 0 to ¢ = 7(q).
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Example—Stable Unit Circle

Rewrite (1) in polar coordinates:

r:‘= r(1—r?)

Choose £ = {(r,0) : r > 0,0 = 27k}.

The solution is
(pt(ro, 90) H <[1 + (7‘62 — l)e_zt]_l/z,t + 90)

First return time from any point (rg,8¢) € X is 7(rg,6¢) = 27.
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Example—Stable Unit Circle

The Poincaré map is
P(ro) = [1+ (rg” — 1)e %] 71/

ro = 1 is a fixed point.

The limit cycle that corresponds to r(¢) = 1 and 6(¢) =t is
locally asymptotically stable, because

dP
~ S0 = [

and

dP

W)= |50 )] =l <1
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Example—The Hand Saw

Can we stabilize the inverted pendulum by vertical oscillations?
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The Hand Saw—Poincaré Map

x1:x2

¢ 1 AV .

x2=z g+ aw®sinxg | Sinx;
X3(t)=(1)

Choose X = {x3 = 27k}.
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The Hand Saw—Poincaré Map

q"=0and T = 27 /w. No explicit expression for P. ltis,
however, easy to determine W numerically. Do two (or
preferably many more) different simulations with different,
small, initial conditions x(0) = y and x(0) = z.

Solve W through (least squares solution of)

[x(T)‘xw):y x(T)‘x(0)=z] =W [y Z]

This gives fora = 1cm, £ = 17cm, @ = 180

1.37  0.035
RS [—3.86 0.630]

which has eigenvalues (1.047,0.955). Unstable.
W is stable for @ > 183
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The Hand Saw—Stability Condition

Make the assumptions that
£>a and aw? > g

Then some calculations show that the Poincaré map is stable at

g* = 0 when
V2g/
a

w >

a=1cmand /=17 cm give ® > 182.6 rad/s (29 Hz).
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The Hand Saw—Simulation

Simulation results give good agreement

0.5¢ w = 183

1000

500} w = 182
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Next Lecture

@ Lyapunov methods for stability analysis

Lyapunov generalized the idea of: If the total energy is
dissipated along the trajectories (i.e the solution curves), the
system must be stable.

Benefit: Might conclude that a system is stable or
asymptotically stable without solving the nonlinear differential
eqguation.

Nonlinear control is a serious business... cheer up ©
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