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Lecture 2

• Linearization

• Stability definitions

• Simulation in Matlab/Simulink

Material

◮ Glad& Ljung Ch. 11, 12.1,
( Khalil Ch 2.3, part of 4.1, and 4.3 )
(Slotine and Li, pp 40-57)

◮ Lecture slides

Today’s Goal

To be able to

◮ linearize, both around equilibria and trajectories,
◮ explain definitions of local and global stability,
◮ check local stability and local controllability at equilibria
◮ simulate in Simulink,

Example - Linearization around equi libr ium poi nt

The linearization of

ẍ(t) = f (x(t)) = �
l
sin x(t)

around the equilibrium x0 = nπ is given by

¨̃x(t) = f ′(x0)x̃(t) =
�
l
(−1)n x̃(t)

Linearization Around a Trajectory

Idea: Make Taylor-expansion around a known solution {x0(t),u0(t)}
Neglect small terms (i.e., keep the linear terms, as these will locally
dominate over the higher order terms).

Let dx0/dt = f (x0(t),u0(t)) be a known solution. How will a small
deviation {x̃, ũ} from this solution behave?

d(x0 + x̃)
dt

= f (x0(t) + x̃(t),u0(t) + ũ(t))

(x0(t),u0(t))
x̃(t)

(x0(t) + x̃(t),u0(t) + ũ(t))

2 minute exercise: Linearize

ẋ2 = 4x3 + u

around the solution

x0(t) =
1

t2
u0(t) = 0

Hint:
Plug-in x(t) = t−2 + x̃(t), expand the expressions,
and finally remove higher order terms (≥ 2) of x̃.

Linearization Around a Trajectory, cont .

Let (x0(t),u0(t)) denote a solution to ẋ = f (x,u) and consider
another solution (x(t),u(t)) = (x0(t) + x̃(t),u0(t) + ũ(t)):

ẋ(t) = f (x0(t) + x̃(t),u0(t) + ũ(t))

= f (x0(t),u0(t)) +
� f
�x (x0(t),u0(t))x̃(t)

+ � f�u (x0(t),u0(t))ũ(t) +O (qx̃, ũq
2)

(x0(t),u0(t))
x̃(t)

(x0(t) + x̃(t),u0(t) + ũ(t))

State-space form

Hence, for small (x̃, ũ), approximately

˙̃x(t) = A(x0(t),u0(t))x̃(t) + B(x0(t),u0(t))ũ(t)

where (if dim x = 2, dim u = 1)

A(x0(t),u0(t)) =
� f
�x (x0(t),u0(t)) =

[� f1
�x1

� f1
�x2� f2

�x1
� f2
�x2

]

∣

∣

∣

(x0(t),u0(t))

B(x0(t),u0(t)) =
� f
�u (x0(t),u0(t)) =

[ � f1
�u1� f2
�u1

]

∣

∣

∣

(x0(t),u0(t))

Note that A and B are time dependent! However, if we don’t
linearize around a trajectory but linearize around an equilibrium
point (x0(t),u0(t)) " (x0,u0) then A and B are constant.

Linearization, cont ’d

The linearization of the output equation

y(t) = h(x(t),u(t))

around the nominal output y0(t) = h(x0(t),u0(t)) is given by

(y(t) − y0(t)) = C(t)(x(t) − x0(t)) + D(t)(u(t) − u0(t))

where (if dim y= dim x = 2, dim u = 1)

C(t) = �h
�x

∣

∣

∣

(x0,u0)
=

[�h1
�x1

�h1
�x2�h2

�x1
�h2
�x2

]

∣

∣

∣

(x0(t),u0(t))

D(t) = �h
�u

∣

∣

∣

(x0,u0)
=

[�h1
�u1�h2
�u1

]

∣

∣

∣

(x0(t),u0(t))
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Example: Rocket

h(t)

m(t)

ḣ(t) = v(t)
v̇(t) = −� + veu(t)

m(t)
ṁ(t) = −u(t)

Let u0(t) " u0 > 0; x0(t) =





h0(t)
v0(t)
m0(t)



; m0(t) = m0 − u0t.

Linearization: ˙̃x(t) =





0 1 0

0 0
−veu0
m0(t)2

0 0 0



 x̃(t) +





0
ve
m0(t)
−1



 ũ(t)

Part II: Stability definitions

Defin it ion: A norm function ppxpp : x ∈ Rn → R satisfies the
following three properties:

◮ ppxpp = 0 if and only if (iff) x = 0, ppxpp > 0 otherwise.
◮ ppaxpp = appxpp, for any positive a and any signal vector x.
◮ (The triangle inequality) ppx + ypp ≤ ppxpp + ppypp

x
x

yy

x + y
x + y

Defin it ion: (Euclidean norm)

qxq = (x21 + x22 + . . .+ x2n)1/2

x1

x2

x3 ppxpp x =





x1
x2
x3





Loc al Stabi li ty

Consider ẋ = f (x) where f (0) = 0

Defin it ion The equilibrium x = 0 is stable if, for any R > 0,
there exists r > 0, such that

qx(0)q < r =[ qx(t)q < R, for all t ≥ 0

Otherwise the equilibrium point is unstable.

x(t)
r

R

Asymptot ic Stabi li ty

Defin it ion The equilibrium x = 0 is locally asy mptotically
stable (LAS) if it

1) is stable

2) there exists r > 0 so that if qx(0)q < r then

x(t) −→ 0 as t −→∞.

(PhD-exercise: Show that 1) does not follow from 2))

Global Asymptot ic Stabi li ty

Defin it ion The equilibrium is said to be globally
asymptotically s table (GAS) if it is LAS and for all x(0) one
has

x(t) → 0 as t→∞.

Part III: Check local stability and controllability

Lyapuno v’s Linearization Method

Theorem Assume
ẋ = f (x)

has the linearization

d

dt
(x(t) − x0) = A(x(t) − x0)

around the equilibrium point x0 and put

α (A) = maxRe(λ(A))

◮ If α (A) < 0, then ẋ = f (x) is LAS at x0,
◮ If α (A) > 0, then ẋ = f (x) is unstable at x0,
◮ If α (A) = 0, then no conclusion can be drawn.

(Proof in Lecture 4)
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Example

The linearization of

ẋ1 = −x21 + x1 + sin(x2)
ẋ2 = cos(x2) − x31 − 5x2

at x0 =








1

0








gives A =









−1 1

−3 −5









Eigenvalues are given by the characteristic equation

0 = det(λ I − A) = (λ + 1)(λ + 5) + 3

This gives λ = {−2,−4}, which are both in the left half-plane,
hence the nonlinear system is LAS around x0.

Loc al Cont rol labi li ty

Theorem Assume
ẋ = f (x,u)

has the linearization

d

dt
(x(t) − x0) = A(x(t) − x0) + B(u(t) − u0)

around the equilibrium (x0,u0) then

◮ (A, B) controllable [ f (x,u) nonlinear locally controllable

Here non lin ear locally controllable is defined as:

For every T > 0 and ε > 0 the set of states x(T) that can be
reached from x(0) = x0, by using controls satisfying
qu(t) − u0q < ε , contains a small ball around x0.

5 minute exercise:

Is the ball and beam

7

5
ẍ = xφ̇2 + � sinφ + 2r

5
φ̈

nonlinearly locally controllable around
φ̇ = φ = x = ẋ = 0 (with φ̈ as input)?

Remark: This is a bit bit more detailed model of the ball and beam than we
saw in Lecture 1.

However...

Bosch 2008 (Automatic parking assistance)

◮ Multiple turns
◮ parking lot > car length + 80 cm

More parking in lecture 12

Example

An inverted pendulum with vertically moving pivot point

phi

u

φ̈(t) = 1
l
(� + u(t)) sin(φ(t)),

where u(t) is acceleration, can be written as

ẋ1 = x2

ẋ2 = 1

l
(� + u) sin(x1)

Example, cont .

The linearization around x1 = x2 = 0,u = 0 is given by

ẋ1 = x2

ẋ2 = �
l
x1

It is not controllable, hence no conclusion can be drawn about
nonlinear controllability

However, simulations show that the system is stabilized by

u(t) = εω 2 sin(ω t)

if ω is large enough !

Demonstration We will come back to this example later.

Bonus — Discrete Time

Many results are parallel (observability, controllability,...)

Example: The difference equation

xk+1 = f (xk)

is asymptotically stable at x∗ if the linearization

� f
�x

∣

∣

∣

x∗
has all eigenvalues in pλ p < 1

(that is, within the unit circle).
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Example (cont’d): Numerical iteration

xk+1 = f (xk)

to find fixed point
x∗ = f (x∗)

When does the iteration converge?

x0
x0x0x0x0

xx
xx

f (x)

f (x)
f (x)

f (x)

?

Part IV: Simulation

Often the only method

ẋ = f (x)
◮ ACSL
◮ Simnon
◮ Simulink

F(ẋ, x) = 0
◮ Omsim

http://www.control.lth.se/∼cace/omsim.html

◮ Dymola http://www.dynasim.se/

◮ Modelica
http://www.dynasim.se/Modelica/index.html

Special purpose
◮ Spice (electronics)
◮ EMTP (electromagnetic transients)
◮ Adams (mechanical systems)

Simul ink

> matlab

> > simulink

Simul ink, An Example

File -> New -> Model

Double click on Continuous

Transfer Fcn

Step (in Sources)

Scope (in Sinks)

Connect (mouse-left)

Simulation->Parameters

1

s+1

Transfer FcnStep Scope

Choos e Simulation Parameters

Don’t forget “Apply”

Save Resul ts to Workspace

1

s+1

Transfer Fcn

t

To Workspace1

y

To WorkspaceSignal
Generator

Clock

Check “Save format” of output blocks (“Array” instead of “Structure”)

> > plot(t,y)

(or use “Structure” which also contains the time information.)

How To Get Better Accuracy

Modify Refine, Absolute and Relative Tolerances, Integration
method

Refine adds interpolation points:

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8
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Refine = 1
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Refine = 10

Points were correct, onl y the plot was bad
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Use Scripts to Document Simulations

If the block-diagram is saved to stepmodel.mdl,
the following Script-file simstepmodel.m simulates the system:

open_system(’stepmodel’)

set_param(’stepmodel’,’RelTol’,’1e-3’)

set_param(’stepmodel’,’AbsTol’,’1e-6’)

set_param(’stepmodel’,’Refine’,’1’)

tic

sim(’stepmodel’,6)

toc

subplot(2,1,1),plot(t,y),title(’y’)

subplot(2,1,2),plot(t,u),title(’u’)

Subm odels, Example: Water tanks

Equation for one water tank:

ḣ = (u− q)/A
q = a

√

2�
√
h

Corresponding Simulink model:

2

h

1

qSum
s

1

Integrator

1/A

Gain

f(u)

Fcn

1

In

Make a subsystem and connect two water tanks in series.

1

Out

In

q

h

Subsystem2

In

q

h

Subsystem

1

In

Linearization in Simul ink

Use the command trim to find e.g., stationary points to a
system > > A=2.7e-3;a=7e-6,g=9.8;

> > % Example to find input u for desired states/output

> > [x0,u0,y0]=trim(’flow’,[0.1 0.1]’,[],0.1)

x0 =

0.1000

0.1000

u0 =

8.3996e-06

y0 =

0.1000

Linearization in Simul ink, cont .

Use the command linmod to find a linear approximation of the
system around an operating point:

> > [aa,bb,cc,dd]=linmod(’flow’,x0,u0);

> > sys=ss(aa,bb,cc,dd);

> > bode(sys)

Linearization in Simul ink; Alternative

By right-clicking on a signal connector in a Simulink model you
can add “Linearization points” (inputs and/or outputs).

2

h

1

qOutput Point

1
s

IntegratorInput Point

1/A

Gain

a*sqrt(2*g*u[1])

Fcn

1

In1

Start a “Control and Estimation Tool Manager” to get a linearized
model by
Tools -> Control Design ->Linear analysis ...

where you can set the operating points, export linearized model to
Workspace (Model-> Export to Workspace) and much more.

Comput er exercise

Simulation of JAS 39 Gripen

command

upilot

t

time

x

states

reference

1

T_f.s+1

prefilter

x’ = Ax+Bu
 y = Cx+Du

plane
dynamics

theta

pitch angle
pilot 1

L

Kf

Clock

Ctheta

◮ Simulation
◮ Analysis of PIO using describing functions
◮ Improve design

Today

◮ Linearization, both around equilibria and trajectories,
◮ Definitions of local and global stability,
◮ How to check local stability and local controllability at

equilibria
◮ Simulation tool: Simulink,

Next Lecture

◮ Phase plane analysis
◮ Classification of equilibria


