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Nonl inear Cont rol and Servo sys tems

Lecture 1

Anders Rantzer and Giacomo Como

Overview Lecture 1

• Practical information

• Course contents

• Nonlinear control phenomena

• Nonlinear differential equations

Cour se Goal

To provide students with a solid theoretical foundation of
nonlinear control systems combined with a good engineering
ability

You should after the course be able to

◮ recognize common nonlinear control problems,
◮ use some powerful analysis methods, and
◮ use some practical design methods.

Cour se Material

◮ Textbook
◮ Glad and Ljung, Reglerteori, flervariabla och olinjära

metoder, 2003, Studentlitteratur,ISBN 9-14-403003-7 or the
English translation Control Theory, 2000, Taylor & Francis
Ltd, ISBN 0-74-840878-9. The course covers Chapters
11-16,18. (MPC and optimal control not covered in the
other alternative textbooks.)

◮ ALTERNATIVE: H. Khalil, Nonlinear Systems (3rd ed.), 2002,
Prentice Hall, ISBN 0-13-122740-8. A good, but a bit more
advanced book.

◮ ALTERNATIVE (Hard to get/out of print): Slotine and
Li, Applied Nonlinear Control, Prentice Hall, 1991. The
course covers chapters 1-3 and 5, and sections 4.7-4.8,
6.2, 7.1-7.3.

Cour se Material, cont .

◮ Handouts (Lecture notes + extra material)

◮ Exercises (can be download from the course home page)

◮ Lab PMs 1, 2 and 3

◮ Home page
http://www.control.lth.se/course/FRTN05/

◮ Matlab/Simulink other simulation software
see home page

Lectures and labs

The lectures (30 hours) are given as follows:

Mon 13-15, M:D
Wed 8-10, M:E, January 18 - February 22
Thu 10-12 M:D January 19

The lectures are given in English.

———————

The three laboratory experiments are mandatory.

Sign-up lists are posted on the web at least one week before
the first laboratory experiment. The lists close one day before
the first session.

The Laboratory PMs are available at the course homepage.

Before the lab sessions some home assignments have to be
done. No reports after the labs.

Exercise sess ions and TAs

The exercises (28 hours) are offered twice a week;

Tue 15-17 Wed 15-17

NOTE: The exercises are held in either ordinary lecture rooms or the
department laboratory on the bottom floor in the south end of the
Mechanical Engineering building, see sc hedule on ho me page.

Jerker Nordh Jonas Dürango

The Cour se

◮ 14 lectures

◮ 14 exercises

◮ 3 laboratories

◮ 5 hour exam: March 7, 2012.
Open-book exam: Lecture notes but no old exams or
exercises allowed. Next exam on April 13, 2012
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Cont ents

◮ Introduction. Typical nonlinear problems and phenomena.
◮ Linearization. Simulation.
◮ Stability theory.
◮ Periodic solutions.
◮ Compensation for friction, saturation, back-lash etc.
◮ Optimal control.
◮ Nonlinear control design methods.

Todays lecture

Common nonlinear phenomena

◮ Input-dependent stability
◮ Stable periodic solutions
◮ Jump resonances and subresonances

Nonlinear model structures

◮ Common nonlinear components
◮ State equations
◮ Feedback representation

Linear Systems

S
u y= S(u)

Defin it ions: The system S is linear if

S(αu) = αS(u), scaling

S(u1 + u2) = S(u1) + S(u2), superposition

A system is time-invariant if delaying the input results in a
delayed output:

y(t− τ ) = S(u(t− τ ))

Linear time-invariant sys tems are easy to analyze

Different representations of same system/behavior

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) = 0

y(t) = �(t) ⋆ u(t) =
∫

�(r)u(t− r)dr

Y(s) = G(s)U(s)

Local stability = global stability:

Eigenvalues of A (= poles of G(s)) in left half plane

Superposition:

Enough to know step (or impulse) response

Frequency analysis possible:

Sinusoidal inputs give sinusoidal outputs

Linear models are not always enough

Example: Ball and beam

x

m�

m� sin(φ)

φ

Linear model (acceleration along beam) :
Combine F = m ⋅ a = m d2x

dt2
and F = m� sin(φ):

ẍ(t) = 5�
7

φ(t)

Linear models are not enough

x = position (meter)

φ = angle (radians)

� = 9.81 (meter/sec2)

Can the ball move 0.1 meter in 0.1 seconds?

Simple approximations give

x(t) ( 50

7

t2

2
φ0 ( 0.04φ0

φ0 ( 0.1

0.04
= 2.5 radians

Clearly outside linear region!

Contact problem, friction, centripetal force, saturation

How fast can it be done? (Optimal control)

2 minute exercise: Find a simple system ẋ = f (x,u) that is
stable for a small input step but unstable for large input steps.

Stabi li ty Can Depend on Ampl itude

?+ 1
s

1
(s+1)2

Motor Valve Process

−1

r y

Valve characteristic f (x) =???
Step changes of amplitude, r = 0.2, r = 1.68, and r = 1.72
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Step Respons es
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Stability depends on amplitude!

Stable Periodi c Solut ions

Example: Motor with back-lash

y

Sum

5

P−controller
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5s  +s2

Motor

0

Constant

Backlash

−1

Motor: G(s) = 1
s(1+5s)

Controller: K = 5

Stable Periodi c Solut ions

Output for different initial conditions:
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Frequency and amplitude independent of initial conditions!

Several systems use the existence of such a phenomenon

Relay Feedback Example

Period and amplitude of limit cycle are used for autotuning

Σ Process

PID

Relay

A

T

u y

  − 1
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Time
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[ patent: T Hägglund and K J Åström]

Jump Resonances

y

Sum
Sine Wave

Saturation

20

5s  +s2

Motor

−1

Response for sinusoidal depends on initial condition

Problem when doing frequency response measurement

Jump Resonances

u = 0.5 sin(1.3t), saturation level =1.0

Two different initial conditions
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give two different amplifications for same sinusoid!

Jump Resonances

Measured frequency response (many-valued)
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New Frequencies

Example: Sinusoidal input, saturation level 1

a sin t y

Saturation
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New Frequencies

Example: Electrical power distribution

THD = Total Harmonic Distortion =
∑∞
k=2 energy in tone k
energy in tone 1

Nonlinear loads: Rectifiers, switched electronics, transformers

Important, increasing problem

Guarantee electrical quality

Standards, such as THD < 5%

New Frequencies

Example: Mobile telephone

Effective amplifiers work in nonlinear region

Introduces spectrum leakage

Channels close to each other

Trade-off between effectivity and linearity

Subr esonances

Example: Duffing’s equation ÿ+ ẏ+ y− y3 = a sin(ω t)
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When is Nonl inear Theory Needed?

◮ Hard to know when - Try simple things first!
◮ Regulator problem versus servo problem
◮ Change of working conditions (production on demand,

short batches, many startups)
◮ Mode switches
◮ Nonlinear components

How to detect? Make step responses, Bode plots

◮ Step up/step down
◮ Vary amplitude
◮ Sweep frequency up/frequency down

Some Nonl inearities

Static – dynamic

Sign

Saturation

Relay

eu

Math
Function

Look−Up
Table

Dead Zone

Coulomb &
Viscous Friction

Backlash

|u|

Abs

2 minute exercise

Construct a model for a “rate limiter” using some of the previous
nonlinear blocks.

Nonl inear Different ial Equations

Problems

◮ No analytic solutions
◮ Existence?
◮ Uniqueness?
◮ etc
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Existence Problems

Example: The differential equation

dx

dt
= x2, x(0) = x0

has solution

x(t) = x0

1− x0t
, 0 ≤ t < 1

x0

Finite escape time

t f =
1

x0

Fini te Escape Time
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Finite escape time of dx/dt = x2

Uniqueness Problems

Example: The equation ẋ = √x, x(0) = 0 has many solutions:

x(t) =
{

(t− C)2/4 t > C
0 t ≤ C
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Compare with water tank:

dh/dt = −a
√
h, h : height (water level)

Change to backward-time: “If I see it empty, when was it full?”)

Existence and Uniqueness

Theorem
Let ΩR denote the ball

ΩR = {z; qz− aq ≤ R}

If f is Lipschitz-continuous:

q f (z) − f (y)q ≤ Kqz− yq, for all z, y∈ Ω

then ẋ(t) = f (x(t)), x(0) = a has a unique solution in

0 ≤ t < R/CR,

where CR = maxΩR q f (x)q

State-Space Models

◮ State vector x
◮ Input vector u
◮ Output vector y

general: f (x,u, y, ẋ, u̇, ẏ, . . .) = 0
explicit: ẋ = f (x,u), y= h(x)

affine in u: ẋ = f (x) + �(x)u, y= h(x)
linear time-invariant: ẋ = Ax + Bu, y= Cx

Transformation to Autonom ous System

Nonautonomous:
ẋ = f (x, t)

Always possible to transform to autonomous system

Introduce xn+1 = time

ẋ = f (x, xn+1)
ẋn+1 = 1

Transformation to First-Order System

Assume d
ky

dtk
highest derivative of y

Introduce x =
[

y dy
dt
. . . dk−1y

dtk−1

]T

Example: Pendulum

MR2θ̈ + kθ̇ + M�R sinθ = 0

x =
[

θ θ̇
]T

gives

ẋ1 = x2

ẋ2 = − k

MR2
x2 −

�
R
sin x1

A Standard Form for Analys is

Transform to the following form

G(s)

Nonlinearities
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Example, Closed Loop with Friction

_

_
GC

Friction

vref u

F

v

Z[

−G
1+CG

Friction

Equi libr ia (=singul ar poi nts)

Put all derivatives to zero!

General: f (x0,u0, y0, 0, 0, 0, . . .) = 0
Explicit: f (x0,u0) = 0
Linear: Ax0 + Bu0 = 0 (has analytical solution(s)!)

Mul tiple Equi libr ia

Example: Pendulum

MR2θ̈ + kθ̇ + M�R sinθ = 0

Equilibria given by θ̈ = θ̇ = 0 =[ sinθ = 0 =[ θ = nπ
Alternatively,

ẋ1 = x2

ẋ2 = − k

MR2
x2 −

�
R
sin x1

gives x2 = 0, sin(x1) = 0, etc

Next Lecture

◮ Linearization
◮ Stability definitions
◮ Simulation in Matlab


