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1. Introduction

This laboratory exercise addresses optimal control applied to a free swing-

ing pendulum that is attached to a cart. The laboration consists of three

parts. The first part is on time optimal control of the cart. The second and

third parts deal with time optimal control of the pendulum and cart to-

gether. In all three parts, the task will be to move the cart along the track

in as short time as possible. The system should start and stop at rest and

we have limited control actuation.

Important! There are 5 assignments in the lab. Number 1, 2, 4 and

5 have home assignment parts, which you will have to do before the

lab.

The files you need for the lab can be downloaded from the course homepage.

Start Matlab by typing matlab -nodesktop or just matlab in the terminal

and initialize the lab by running the script pend_init.m in Matlab.

2. Modeling of a Pendulum on a Cart

2.1 System description

The system consists of a cart that is driven by a DC-motor and a free swing-

ing pendulum that is attached to the cart. The system will be controlled by

a cascaded controller, see Figure 1. The outer controllers, C2 in Figure 1,

that will be designed during the lab with different control objectives in

mind, will use the acceleration reference to the inner loop as its control

signal. We will use both feedback and feedforward control during the lab.
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Figure 1 Control architechture

2.2 Nonlinear Model

The inner loop in Figure 1 consists of a cascade of a current loop and

a PI-controlled velocity/acceleration loop. Without going into details the
resulting cart dynamics can be modeled as a double integrator from accel-

eration reference are f to cart position p, that is

P =
1

s2
Are f
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We are intereseted in the velocity and the position of the cart. To create

a state space model of the cart we introduce position, p, as one state, and

velocity, ṗ, as the other state. If we introduce

x = (p ṗ)T

the state equation becomes

ẋ = Acx + Bcare f =
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are f (1)

A pendulum model is most easily obtained using Lagrange mechanics.

−mp̈

(xp,yp)

x

y

l

θ

Figure 2 The pendulum

The acceleration of the suspension point of the pendulum is equal to the

acceleration of the cart, p̈. This creates an oppositely directed force, Fx =
−mp̈, at the suspension point of the pendulum. This force acts along the
negative x-axis, see Figure 2. The potential energy, V , and the kinetic

energy, T , in the x-y coordinates are

V = m�yp , T =
1

2
m(ẋ2p + ẏ

2
p)

where xp and yp are the pendulum end point coordinates, m is the pendu-

lum mass and � is the gravitational acceleration. We introduce the gener-
alized coordinate θ , which is the pendulum angle, see Figure 2. Note that

we only need one generalized coordinate since the radius is constant and

equal to the length of the pendulum1, l. The relationsship between the

coordinate systems is

xp = rx(θ ) = −l sinθ

yp = ry(θ ) = −l cosθ

In the generalized coordinate, θ , the potential and kinetic energy become

V = −m�l cosθ and T =
1

2
ml2θ̇ 2

1For the cart-pendulum process in the lab exercise, the pendulum length, l, is 0.345 m.
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The Lagrangian is L = T − V and the Lagrange equation is

d

dt

(

�L

�θ̇

)

−
�L

�θ
= (Fx 0) ⋅ (

�rx(θ )

�θ

�ry(θ )

�θ
)T

Calculation of the partial derivatives gives

d

dt
(ml2θ̇ ) +m�l sinθ = mp̈l cosθ

which results in the following pendulum equation

θ̈ = −
�

l
sinθ +

p̈

l
cosθ

The reaction forces from the pendulum to the cart is attenuated by the

inner controller. Thus an approximate model of the complete system dy-

namics is
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where p̈ in the second equation has been replaced by the control signal

are f .

2.3 Linearized Model

The model of the cart dynamics is linear but the pendulum equation is

nonlinear. When linearizing the pendulum equation in the downward posi-

tion, around θ = 0, we get sinθ ( θ and cosθ ( 1. We introduce the state
vector

z = (p ṗ θ θ̇)T

Linearization of the full system dynamics, (2), results in the following state
space system

ż = Az+ Bare f =
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3. Control of the Pendulum on Cart

The first part of this laboratory will be on time optimal control of the cart.

The second part will address time optimal control of the cart and the pen-

dulum. The third part uses dedicated optimization software to create time

optimal control trajectories. To make it more interesting we will have addi-

tional constraints specified by areas where the end point of the pendulum

must not enter.
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3.1 Time-optimal Control (general case)

The linearized models will be used when calculating the time-optimal con-

trol problems. To avoid infinite control signals, we need control signal limi-

tations, which is a physically natural constraint on the control design. The

problem becomes

minimize t f = minimize
∫ t f
0 1 dt

subject to: ẋ = Aox + Bou
pup ≤ umax
x(0) = x0
x(t f ) = xt f

where x is some arbitrary state vector and u is some control signal. The

Hamiltonian, H , becomes H = 1+λT(Aox+Bou). The Maximum Principle
states that if we have optimal trajectories u∗(t) and x∗(t) then

min
u
H(x(t),u(t),λ(t)) = H(x∗(t),u∗(t),λ(t))

where

λ̇ = −
�H

�x
= −ATo λ

Since the only term that is dependent on u in H is λT(t)Bou(t) = σ (t)u(t),
with σ (t) " λT(t)Bo, H is minimized by choosing

u∗(t) =

{

−umax , σ (t) > 0

umax , σ (t) < 0

Thus the time optimal controller is a bang-bang controller.

3.2 Time-optimal Control of the Cart

The model of the cart is found in (1) but is restated here for convenience.

ẋ = Acx + Bcare f =
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where x = (p ṗ)T . The problem we are dealing with in this part of the lab is
to move the cart along the track in as short time as possible. The cart should

start at rest at one point, p0, and stop at rest at the origin. The magnitude

of the control signal is limited to amax m/s
2. Mathematically this problem

can be formulated as the following minimum time optimization problem

minimize t f
subject to: ẋ = Acx + Bcare f
pare f p ≤ amax
x(0) = (p0 0)

T

x(t f ) = (0 0)
T
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ASSIGNMENT 1

Home assignment:

• Use the theory in Section 3.1 to decide the number of switches

in the optimal control trajectory for the cart. That is, decide how

many times σ (t) changes sign. Determine an expression for the
optimal a∗

re f . a
∗
re f starts with a positive value.

• The solution to state equation (4) is

x(t f ) = e
Act f x(0) +

∫ t f

0

eAc(t f−τ )Bcare fdτ (5)

where

eAct =









1 t

0 1









Set your calculated a∗
re f as control signal in (5) and calculate the

switching time, t1, and the final time, t f .

At the lab: Edit assignment1.m and run it to calculate the switching

times and the final time. Simulate the system using cart.mdl to verify

that the control objective is achieved.

Since we have two states it is interesting to regard the problem from a

geometric point of view. Set p1 = p and p2 = ṗ, for are f = amax we have

ṗ1 = p2, ṗ2 = amax

The time variable can be eliminated by forming dp2/dp1 =
dp2
dt
/dp1
dt
. This

gives

dp2

dp1
=
amax

p2

Rearranging the terms and integrating give

∫

dp1 =

∫

p2

amax
dp2

with the solution

p1 + C1 =
p22
2amax

(6)

When instead are f = −amax we get the solution

p1 + C2 = −
p22
2amax

(7)

Phase plane trajectories for some values of C1 and C2, when amax = 3 m/s
2,

are plotted in Figure 3.
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Figure 3 Trajectories for are f = amax = 3 m/s
2
and are f = −amax = −3 m/s

2

ASSIGNMENT 2

Home assignment:

• The system should be controlled to the origin. Decide graphically

from Figure 3 the regions of the state space where amax and−amax
should be used respectively to achieve this. Draw the switching

curve between the two regions.

• Determine an equation f (p1, p2) = 0 that describes how p1 and p2
relate to each other on the switching curve. (Hint: First determine
the constants, C1 and C2, in (6) and (7). Then put the equations
together. To do this you will need to use sign(p2).)

• f (p1, p2) takes negative values for points on one side of the switch-
ing curve, and positive values for points on the other side. Deter-

mine which sides that gives positive and negative values respec-

tively. We want are f to be amax on one side of the switching curve

and −amax on the other. Derive an expression for are f . (Hint: Use
sign( f (p1, p2)).)

At the lab:

• Type your derived controller in the block for embedded matlab

code in cart.mdl. Switch controller and simulate the system to

see if the control objectives are achieved. Phase plane trajectories

are plotted by the script plot_cart_pp.m

• Try the two controllers on the real system. To do this you need

to change from “Simulation model” to “Real system” in cart.mdl.

The “Real system” is found in pend_lib.mdl. Which controller

performes best if the actual initial position is not p0?

3.3 Time-optimal Control of the Pendulum on Cart

The state space model for the full system is found in (3), but is restated

6



here for convenience.

ż = Az+ Bare f =



























0 1 0 0

0 0 0 0

0 0 0 1

0 0 −�/l 0



























z+



























0

1

0

1/l



























are f

where z = (p ṗ θ θ̇ )T . The control objective is the same as in the previ-
ous section, that is to move the cart from one position on the track, p0,

to another position as fast as possible with limited control actuation. The

system should be at rest both at the starting point and the final point.

This is a time optimal control problem and from the introductory section

we know that the optimal control trajectory is of bang-bang type. Since we

have four states the optimal control trajectory should have (at most) three
sign changes. That is

a∗
re f (t) =























amax , 0 ≤ t ≤ t1

−amax , t1 ≤ t ≤ t2

amax , t2 ≤ t ≤ t3

−amax , t3 ≤ t ≤ t f

The optimal switching times are calculated using (5) with appropriate sys-
tem matrices. We will need eAt to do this (Note:

√

�/l = ω ).

eAt =





























1 t 0 0

0 1 0 0

0 0 cosω t 1
ω
sinω t

0 0 −ω sinω t cosω t





























Insert this into (5) and we will get
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+ (8)

amax

∫ t1

0





























t f − τ

1
1
lω
sinω (t f − τ )

1
l
cosω (t f − τ )





























dτ +

amax(−

∫ t2

t1

(...)dτ +

∫ t3

t2

(...)dτ −

∫ t f

t3

(...)dτ )

The primitive function is

F(τ ) =































t fτ −
τ 2

2

τ

1
lω 2
cosω (t f − τ )

− 1
lω
sinω (t f − τ )
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Insert this into (8) and we get
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+ amax(−F(0) + 2F(t1) − 2F(t2) + 2F(t3) − F(t f )) (9)

The script assignment3.m calculates t1, t2, t3 and t f that satisfies (9) for
chosen amax and p0. The optimal state and control trajectories that re-

sult from applying the optimal control trajectory are called zopt and a
opt
re f

respectively.

ASSIGNMENT 3

• Choose amax and p0 in assignment3.m, and run the script.

Then simulate the system using cart_pend.mdl. Use the script

plot_pend.m to plot or animate the resulting pendulum move-

ments.

• Simulate again, but change initial values for the pendulum. The

initial values are changed in assignment3.m. Why are the control

objectives not met?

Since the control objectives are not met we will introduce feedback. We

want the feedback to take care of when the actual state trajectories, z, de-

viate from their optimal trajectories, zopt. We also want to penalize when

the control signal, are f , deviates from the optimal one, a
opt
re f , to get a smooth

controller. Since we have a maximum possible cart-acceleration of 7 m/s2,
our control signal should stay within this limit,

∣

∣are f
∣

∣ ≤ 7. The track is
a bit more than 1 meter long. We want our controller to take care of this

limitation as well. If we define our starting position, p0, to be 0.1 m from

the left end of the track we get that p+ p0 ≤ 0.9 m and p+ p0 ≥ −0.1 m
since p = 0 at p0. This kind of problem, with constraints, is perfectly suited
for an model predictive controller (MPC). In order to use MPC we need dis-
crete time models of the system behaviour around the optimal trajectory.

To this end we linearize the system around the optimal trajectory and dis-

cretize the result. The resulting models are
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∆z(k+ 1) = Φ(k)∆z(k) + Γ(k)∆are f (k)

Φ(k) =
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0 1 0 0

0 0 cosω kh
1

ω k
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0 0 −ω k sinω kh cosω kh
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− bk
ω 2
k

(cosω kh− 1)

bk
ω k
sinω kh

































ω k =

√

� cosθ opt(k)

l

bk =
cosθ opt(k)

l

where ∆z(k) = z(k) − zopt(k) and ∆are f (k) = are f (k) − a
opt
re f (k). It turns out

that the discretized model depends on the angle of the pendulum. Since we

know at which angle the pendulum should be at every time step, θ opt(k),
we use this angle in our linearized model. This is a good approximation,

if the actual pendulum angle, θ (k), is not too far away from the optimal,
θ opt(k).

Before we can state the optimization problem that the MPC-controller

should solve at each time step, we need to define some matrices

Z(k) =





















z(k+ 1)

...

z(k+ N)





















Are f (k) =





















are f (k)

...

are f (k+ N − 1)





















Zopt(k) =





















zopt(k+ 1)

...

zopt(k+ N)





















A
opt
re f (k) =























a
opt
re f
(k)

...

a
opt
re f
(k+ N − 1)























∆Z(k) = Z(k) − Zopt(k) ∆Are f (k) = Are f (k) − A
opt
re f
(k)

In addition we also need a vector for the predicted positions, P(k) = block-
diag([1 0 0 0])Z(k). The block diagonal matrix picks every fourth element
of Z(k) since they contain the predicted positions of the cart. Equivalent
vectors are produced for the position deviations from the optimal positions,

∆P(k) and for the optimal positions, Popt(k). At each time step, k, the
MPC-controller should solve the following optimization problem

min
∆Are f (k)

∆Z(k)TQ∆Z(k) + ∆Are f (k)
TR∆Are f (k)

subject to: Are f (k) = ∆Are f (k) + A
opt
re f (k) ≤ 7

Are f (k) = ∆Are f (k) + A
opt
re f
(k) ≥ −7

P(k) = ∆P(k) + Popt(k) + p01 ≤ 0.1
P(k) = ∆P(k) + Popt(k) + p01 ≥ −0.9
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The Q- and the R-matrices are user chosen relative costs between the

different states and the control. The optimization problem is solved at every

time instant, k, and the control are f (k) = ∆are f (k) + a
opt
re f (k) is applied.

ASSIGNMENT 4

Home assignment: Try to understand how the Q and R-matrices

affects the control. Discuss how large and small values of R affect the

aggresiveness in the control signal. Also discuss how large and small

values of Q affect the corresponding state trajectory errors.

At the lab:

• Open assignment4.m and choose Q and R-matrices, for the MPC-

controller. Also choose sampling time, h, and cost horizon, N . The

prediction horizon of the MPC-controller is Nh. This should be at

least 0.7 s to get good predictions of the pendulum behaviour.

The computation time for the MPC-controller, found in the scope

execTime in the Simulink-model, must be less than h/2 s. Then
choose p0 and amax. Simulate the system with different initial

conditions on the pendulum. Recalibrate Q, R, h and N until you

are satisfied. Remember to examine the control signal as well as

the controlled signals, since we have limited actuation. Use the

script plot_pend.m to plot or animate the resulting pendulum

movements. Edit the file to specify animation speed.

• When you are satisfied with your design, try your controller on

the real process. Run the system with and without the MPC feed-

back. Also run the system with different initial conditions on the

pendulum.

3.4 Optimization using JModelica.org

In this part we will use dedicated optimization software, namely JModel-

ica.org2 together with Ipopt, to solve an optimization problem. Ipopt is a

solver for non-linear optimization problems (NLPs). The interface between
the user and JModelica.org is the scripting language Python. In order to

solve an optimization problem, all the required Python commands can con-

veniently be collected in a script with a file name that ends with .py. The

Python environment also lets you plot the result of the optimization. JMod-

elica.org needs a model describing the process to be controlled, specified in

the modelling language Modelica, and a high-level description of the opti-

mization problem as inputs. The model and the optimization problem are

then transformed into a large NLP by JModelica.org. The resulting NLP

is then solved automatically by Ipopt. It should be mentioned that JMod-

elica.org was initiated at this department and is now maintained by the

department, industry and a community in collaboration.

The model of the non-linear pendulum on cart, (2), and the optimization
problem are specified in the JModelica.org file pendulum.mop. The states

in the model are the cart position, which is p, the cart velocity, p_dot, the

pendulum angle, theta, and the pendulum angle velocity, theta_dot. The

2For more information about the open-source software JModelica.org, visit

http://www.jmodelica.org.
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model also contains varibles that specify the x- and y-coordinates of the

pendulum end point, these are x_p and y_p, respectively.

Figure 4 shows how we want the pendulum to move. The pendulum should

start at rest at p = −0.8 m. The goal is to reach p = 0 m with the constraint
that the end point of the pendulum must not enter the ellipse. When at

p = 0 the pendulum should be at rest, meaning that all states should be
zero. This movement should be performed in as short time as possible.

The control signal, a_ref , is constrained to be between −5 and 5 m/s2, its
derivative, a_ref_dot, is constrained to be between −100 and 100 m/s3 in
the optimization. Since the track is limited we also need the cart position

to satisfy −0.9 ≤ p ≤ 0.1.
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-0.25

y

x
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(xp,yp)

Figure 4 Constraints on the pendulum
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ASSIGNMENT 5

Home assignment: State the above specified optimization problem

mathematically.

At the lab:

• To initialize and start the optimization software, open a new

terminal window and type

> jmodelica -pylab

This will start a Python environment in the terminal, where

Python commands and scripts can be executed. Open the direc-

tory which you downloaded from the course homepage in the

beginning of the lab by typing

> cd /path/to/lab-directory/

where you have to type your specific directory. Then, open

the JModelica.org file pendulum.mop and specify the missing

constraints and model information from the home assignment.

The initial conditions are already given in this file.

• Run

> run pendulum_opt.py

This script utilizes JModelica.org to transform the optimization

problem into a NLP and to solve it using Ipopt. Finally the

results are plotted. The solver has to be provided with an initial

guess. This is needed because the optimization problem is rather

tough and some “guidance” is needed. The initial guess file,

initial_guess.txt, contains a feasible, but not optimal, solution

to the same problem. The optimization result is found in the file

pendulum_result.txt.

• Open assignment5.m and respecify your MPC parameters from

Assignment 4. Run assignment5.m, then simulate the system us-

ing cart_pend.mdl. Simulate your system with different initial

conditions on the pendulum and both in open and closed loop.

Redesign your MPC controller if you are not satisfied with the

result. The script plot_optim plots the pendulum trajectory and

the elliptic constraint.

• Test your design on the real process.
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