
Solutions to the exam in Nonlinear Control and Servo Systems (FRTN05)
2011–03–09

1.

a. (i)-D, (ii)-B, (iii)-A, (iv)-C. Motivate e.g. by computing the equilibrium
points of the four systems.

b. The directions are given in figure 1. Motivate e.g. by classifying all equilib-

rium points of the four systems.
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x1 ’ = − x2
x2 ’ = x1  
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x1 ’ = x2                         
x2 ’ = − 8 x1 − 2 x2 − x1 x1 x1 x1
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C

x1 ’ = − sin(x2)
x2 ’ = x1       
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x1 ’ = x2                                  
x2 ’ = − x1 + x2 + x2 (1 − 3 x12 − 2 x22)
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Figure 1 The phase portraits in problem 1

2.

a. The saturation nonlinearity commonly appears in actuators (limitation of
control signal).

b. The nonlinearity belongs to the sector [0, 1].

c. Since P(s) is stable and 0 = k1 < k2 = 1, the Nyquist curve should stay to
the right of the line Re s = −1/k2 = −1. In this case, the Nyquist curve
does not stay to the right of Re s = −1 so we can not conclude stability of
the closed loop system.

The closed loop system is locally stable when r = 0, since the nonlinearity
is linear around 0 and the system [1 + P(s)]−1 is stable according to the
Nyquist theorem.
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3.

a. The describing function of a relay with amplitude 1 is N(A) = 4
π A . Conse-

quently, − 1
N(A) is on the negative real axis and there exists a limit cycle if

the Nyquist curve of the system G(s) intersects the negative real axis. The
intersection must occur, since the system has three poles and no zeros. The

frequency and amplitude of the limit cycle are thus given by:

argG(iw0) = −
π

2
− arctan(w0) − arctan(w0/10) = −π [ w0 = 3.16rad/s

pG(iw0)p =
50

w0

√

w20 + 1
√

w20 + 102
= 0.46

− 1

N(A) = −
π A

4
= 0.46[ A = 0.58

(1)

b. The system in a. will give a limit cycle. The amplitude A of this limit cycle

could be estimated from experiments, which gives gives the ultimate gain:

K0 = 1
pG(iw0p =

4
π A for the relay with amplitude 1. The period time T0 of the

limit cycle can be determined directly from the experiment. Figure 2 shows

a simulation of the relay feedback system.
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Figure 2 Simulation of the relay feedback system in problem 3.

4.

a. Introduce x1 = θ , x2 = θ̇ . We get:

x1 = x2

x2 = ω 20 sin x1 −
ω 20
� u cos x1

b. Swinging up the pendulum could be done by driving the energy of the pen-

dulum to zero, which corresponds to being in the top position. Using the

Lyapunov candidate V (x) = 1
2
E(x)2 and the states chosen in a., we get:

V̇ (x) = E(x)Ė(x) = −1�E(x)x2 cos(x1)u
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Choose for example: u = sign(Ex2 cos x1) = sign[E(θ , θ̇ )θ̇ cos(θ )], which
gives

V̇ (x) = −1�Ex2 cos x1sign(E(x)x2 cos x1) ≤ 0 ∀x

5. Study σ 1 first.
σ 1 = x1 − x2 = 0

σ̇ 1 = ẋ1 − ẋ2 = −x21 + x2 + ueq − x1 − x2 = 0

ueq = x1 + x21
With the calculated equivalent control ueq inserted in the system we get

ẋ1 = −x21 + x2 + ueq = x1 + x2 = 2x1
ẋ2 = x1 + x2 = 2x2

Remember that along the sliding set where σ 1(x) = 0, we have x1 = x2.
Thus the system is unstable along the sliding set.

Now study σ 2.
σ 2 = x1 + 4x2 = 0

σ̇ 2 = ẋ1 + 4ẋ2 = −x21 + x2 + ueq + 4x1 + 4x2 = 0

ueq = −4x1 + x21 − 5x2
With the calculated equivalent control ueq inserted in the system we get

ẋ1 = −x21 + x2 + ueq = −4x1 − 4x2 = −3x1
ẋ2 = x1 + x2 = −4x2 + x2 = −3x2

Remember that along the sliding set where σ 2(x) = 0, we have x1 = −4x2.
Thus the system is stable along the sliding set.

Now study σ 3.
σ 3 = x21 − x2 = 0

σ̇ 3 = 2x1 ẋ1 − ẋ2 = 2x1(−x21 + x2 + ueq) − x1 − x2 = 0

ueq =
1

2x1
(x1 + x2) + x21 − x2

We see directly that the control law is not well-defined for x1 = 0 and
therefore we do not need to check the sliding mode dynamics.

It is therefore decided that the second sliding set is the best of these three

suggested sets. Then, according to the lecture notes, the complete sliding

mode controller can be written as

u = − p
T f (x)
pT�(x) −

µ

pT�(x)sign σ (x) = −µ sign(x1 + 4x2) + x21 − 5x2 − 4x1

where µ is a arbitrary positive constant that decides the rate of convergence
to the sliding set.
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6. Introduce x1 = x, x2 = ẋ. We get

min
1

2

∫ T

0

u(t)2dt

when






















ẋ1 = x2
ẋ2 = −2x1 + u
x1(0) = 0, x2(0) = 0
x1(T) = 3, x2(T) = 0

H = −1
2
u2 + λ1x2 − 2λ2x1 + λ2u

û(t) = λ2(t)
The adjoint equations become

{

λ̇1 = 2λ2
λ̇2 = −2x1 + uλ1

[ λ̈2 = −λ̇1 = −2λ2 which gives

û(t) = A cos(ω t) + B sin(ω t)

with ω =
√
2. A and B are given from the boundary conditions on x1 and

x2.

(3 p)

7. We see that the system consists of two separate subsystems:

{

ẋ1 = x31 + 2x21x2
ẋ2 = x22 + u1

(2)
{

ẋ3 = −x3 + 2x4
ẋ4 = x4 + u2

(3)

System (3) is a linear system. It can easily be stabilized by choosing e.g.

u2 = −2x4

System (2) is nonlinear and in strict feedback form. We therefore apply
backstepping.

Start with the system ẋ1 = x31 + 2x21φ(x1) which can be stabilized using
φ(x1) = −x1. Notice that φ(0) = 0. Take V1(x1) = x21/2. To backstep, define

ζ 2 = (x2 − φ(x1)) = x2 + x1,

to transfer the system into the form

ẋ1 = x31 + 2x21(ζ 2 − x1) = −x31 + 2x21ζ 2
ζ̇ 2 = ẋ2 + ẋ1 = ζ 22 − 2x1ζ 2 + x21 + u1 − x31 + 2x21ζ 2
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Taking V = V1(x1) + ζ 22/2 as a Lyapunov function gives

V̇ = x1(−x31 + 2x21ζ 2) + ζ 2(u1 + ζ 22 − 2x1ζ 2 + x21 − x31 + 2x21ζ 2)

With

u1 = −ζ 22 + 2x1ζ 2 − x21 − x31 − 2x21ζ 2 − ζ 2 = −x1 − x2 − 3x21 − 2x21x2 − x22

we get

V̇ = −x41 − ζ 22 < 0 ∀(x1,ζ 2) ,= 0
The Lyapunov function is radially unbounded. Hence, the origin is globally

asymptotically stable.
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