Goal
To be able to • solve simple optimal control problems by hand • design controllers using the maximum principle
Anders Rantzer Lecture 10, Optimal Control p. 2 The beginning
 John Bernoulli: The bracistochrone problem 1696 Let a particle slide along a frictionless curve. Find the curve that takes the particle from A to B in shortest time
Anders Rantzer Lecture 10, Optimal Control p. 4 Optimal Control
 The space race (Sputnik 1957) Putting satellites in orbit Trajectory planning for interplanetary travel Reentry into atmosphere Minimum time problems Pontryagin's maximum principle, 1956 Dynamic programming, Bellman 1957 Vitalization of a classical field
Anders Rantzer Lecture 10, Optimal Control p. 6 Goddard's Problem
Can you guess the solution when $D(v,h) = 0$? Much harder when $D(v,h) \neq 0$ Can be optimal to have low v when air resistance is high. Burn fuel at higher level. Took about 50 years before a complete solution was found.

Optimal Control Problem. Constituents	Outline
Control signal $u(t), 0 \le t \le t_f$ Criterium $h(t_f)$. Differential equations relating $h(t_f)$ and u Constraints on u Constraints on $x(0)$ and $x(t_f)$ t_f can be fixed or a free variable	 Introduction Static Optimization with Constraints Optimization with Dynamic Constraints The Maximum Principle Examples
Anders Rantzer Lecture 10, Optimal Control p. 9 Preliminary: Static Optimization	Anders Rantzer Lecture 10, Optimal Control Example - static optimization
Minimize $g_1(x, u), x \in \mathbb{R}^n$ and $u \in \mathbb{R}^m$ subject to $g_2(x, u) = 0$ (Assume x can be solved for in g_2 given u) Introduce the Lagrange function	Minimize $g_1(x_1,x_2)=x_1^2+x_2^2$ with the constraint that
$\mathcal{L}(x, u, \lambda) = g_1(x, u) + \lambda^T g_2(x, u)$ Consider variation of \mathcal{L} $\delta g_1 = \delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial x} \delta x + \frac{\partial \mathcal{L}}{\partial u} \delta u$ where $\lambda \in \mathbb{R}^n$ are the adjoined variables. Necessary conditions for local minimum $\frac{\partial \mathcal{L}}{\partial x} = 0 \qquad \frac{\partial \mathcal{L}}{\partial u} = 0$	$g_2(x_1, x_2) = x_1 \cdot x_2 - 1 = 0$
Note: Difference if constrained control! Anders Rantzer Lecture 10, Optimal Control p. 11	Plot with level curves for constant g_1 and the constraint $g_2 = 0$, repectively.
Static Optimization cont'd	Outline
Solving the equations $\frac{\partial L}{\partial x} = \frac{\partial g_1}{\partial x} + \lambda^T \frac{\partial g_2}{\partial x} = 0 \Rightarrow \lambda^T = -\frac{\partial g_1}{\partial x} \left(\frac{\partial g_2}{\partial x}\right)^{-1}$ $\frac{\partial L}{\partial u} = \frac{\partial g_1}{\partial u} + \lambda^T \frac{\partial g_2}{\partial u} = 0 \Rightarrow \frac{\partial g_1}{\partial u} - \frac{\partial g_1}{\partial x} \left(\frac{\partial g_2}{\partial x}\right)^{-1} \frac{\partial g_2}{\partial u} = 0$ This gives <i>m</i> equations to solve for <i>u</i> . Note that $\frac{\partial g_2}{\partial x}$ must be non-singular (which it should be if <i>u</i> determines <i>x</i> through g_2). Sufficient condition for local minimum $\frac{\partial^2 L}{\partial u^2} > 0$	 Introduction Static Optimization with Constraints Optimization with Dynamic Constraints The Maximum Principle Examples
Anders Ranizer Lecture 10, Optimal Control p. 13 Optimization with Dynamic Constraint	Anders Rantzer Lecture 10, Optimal Control Optimization with Dynamic Constraint cont'o
Optimal Control Problem $\min_{u} J = \min_{u} \left\{ \phi(x(t_{f})) + \int_{t_{0}}^{t_{f}} L(x, u) dt \right\}$ subject to $\dot{x} = f(x, u), x(t_{0}) = x_{0}$	Variation of J: $\delta J = \left[\left(\frac{\partial \phi}{\partial x} - \lambda^T \right) \delta x \right]_{t=t_f} + \int_{t_0}^{t_f} \left[\left(\frac{\partial H}{\partial x} + \dot{\lambda}^T \right) \delta x + \frac{\partial H}{\partial u} \delta u \right] dt$ Necessary conditions for local minimum ($\delta J = 0$)
Introduce Hamiltonian: $H(x, u, \lambda) = L(x, u) + \lambda^T f(x, u)$ $J = \phi(x(t_f)) + \int_{t_0}^{t_f} \left[L(x, u) + \lambda^T (f - \dot{x}) \right] dt$	$ \begin{split} \dot{\lambda}^T &= -\frac{\partial H}{\partial x} \qquad \dot{x}^T = \frac{\partial H}{\partial \lambda} \frac{\partial H}{\partial u} = 0 \\ \lambda(t_f)^T &= \frac{\partial \phi}{\partial x} \Big _{t=t_f} \qquad x(t_0) = x_0 \end{split} $
$= \phi(x(t_f)) - \left[\lambda^T x\right]_{t_0}^{t_f} + \int_{t_0}^{t_f} \left[H + \dot{\lambda}^T x\right] dt$ where the second equality is obtained from "integration by	 Adjoined, or co-state, variables, λ(t) λ specified at t = t_f and x at t = t₀ Two Point Boundary Value Problem (TPBV) For sufficiency ^{∂²H}/_{∂n²} ≥ 0

Outline

Problem Formulation (1)

Standard form (1):

- Introduction
- Static Optimization with Constraints
- Optimization with Dynamic Constraints
- The Maximum Principle
- Examples

 $\begin{array}{l} \text{Minimize } \int_{0}^{t_{f}} \overbrace{L(x(t),u(t))}^{\text{Trajectory cost}} dt + \overbrace{\phi(x(t_{f}))}^{\text{Final cost}} \\ \dot{x}(t) = f(x(t),u(t)) \\ u(t) \in U, \quad 0 \leq t \leq t_{f}, \quad t_{f} \text{ given} \\ x(0) = x_{0} \end{array}$

 $x(t) \in R^n, u(t) \in R^m$ U control constraints

Here we have a fixed end-time t_f . This will be relaxed later on.

Anders Rantzer Lecture 10, Optimal Control p. 17	Anders Rantzer Lecture 10, Optimal Control Remarks
The Maximum Principle (18.2)	Keinarks
Introduce the Hamiltonian $H(x, u, \lambda) = L(x, u) + \lambda^{T}(t) f(x, u).$ Suppose optimization problem (1) has a solution $\{u^{*}(t), x^{*}(t)\}$. Then the optimal solution must satisfy $\min_{u \in U} H(x^{*}(t), u, \lambda(t)) = H(x^{*}(t), u^{*}(t), \lambda(t)), 0 \le t \le t_{f},$ where $\lambda(t)$ solves the adjoint equation $d\lambda(t)/dt = -H_{x}^{T}(x^{*}(t), u^{*}(t), \lambda(t)), \text{with} \lambda(t_{f}) = \phi_{x}^{T}(x^{*}(t_{f}))$ Notation $H_{x} = \frac{\partial H}{\partial x} = \left(\frac{\partial H}{\partial x_{1}} - \frac{\partial H}{\partial x_{2}} \cdots\right)$	Proof: If you are theoretically interested look at proof in [Glad & Ljung]. The idea is simply to note that every change of $u(t)$ from the suggested optimal $u^*(t)$ must lead to larger value of the criterium. Should be called "minimum principle" $\lambda(t)$ are called the Lagrange multipliers or the adjoint variables
Anders Rantzer Lecture 10, Optimal Control p. 19 Remarks	Anders Rantzer Lecture 10, Optimal Control Outline
The Maximum Principle gives necessary conditions A pair $(u^*(\cdot), x^*(\cdot))$ is called extremal the conditions of the Maximum Principle are satisfied. Many extremals can exist. The maximum principle gives all possible candidates. However, there might not exist a minimum! Example Minimize $x(1)$ when $\dot{x}(t) = u(t)$, $x(0) = 0$ and $u(t)$ is free Why doesn't there exist a minimum?	 Introduction Static Optimization with Constraints Optimization with Dynamic Constraints The Maximum Principle Examples
Anders Rantzer Lecture 10, Optimal Control p. 21 Example-Boat in Stream	Anders Rantzer Lecture 10, Optimal Control Solution
$\begin{array}{c} (x_2) \\ (x_2) \\ (x_2) \\ (x_1) \\ (x_2) \\ (x_2) \\ (x_2) \\ (x_1) \\ (x_2) \\$	Hamiltonian: $H = 0 + \lambda^T f = \begin{bmatrix} \lambda_1 & \lambda_2 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \lambda_1 (v(x_2) + u_1) + \lambda_2 u_2$ Adjoint equation: $\begin{bmatrix} \dot{\lambda}_1 \\ \dot{\lambda}_2 \end{bmatrix} = \begin{bmatrix} -\partial H / \partial x_1 \\ -\partial H / \partial x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ -v'(x_2)\lambda_1 \end{bmatrix} = \begin{bmatrix} 0 \\ -\lambda_1 \end{bmatrix}$ with boundary conditions $\begin{bmatrix} \lambda_1(T) \\ \lambda_2(T) \end{bmatrix} = \begin{bmatrix} \partial \phi / \partial x_1 _{x=x^*(tf)} \\ \partial \phi / \partial x_2 _{x=x^*(tf)} \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$ This gives $\lambda_1(t) = -1$, $\lambda_2(t) = t - T$

Solution

Optimality: Control signal should solve

$$\min_{u_1^2+u_2^2=1}\lambda_1(v(x_2)+u_1)+\lambda_2u_2$$

Minimize $\lambda_1 u_1 + \lambda_2 u_2$ so that (u_1, u_2) has length 1

$$\begin{split} u_1(t) &= -\frac{\lambda_1(t)}{\sqrt{\lambda_1^2(t) + \lambda_2^2(t)}}, \quad u_2(t) = -\frac{\lambda_2(t)}{\sqrt{\lambda_1^2(t) + \lambda_2^2(t)}}\\ u_1(t) &= \frac{1}{\sqrt{1 + (t-T)^2}}, \quad u_2(t) = \frac{T-t}{\sqrt{1 + (t-T)^2}} \end{split}$$

See fig 18.1 for plots

Remark: It can be shown that this optimal control problem has a minimum. Hence it must be the one we found, since this was the only solution to MP

Anders Rantzer Lecture 10, Optimal Control Goddard's Rocket Problem revisited

How to send a rocket as high up in the air as possible?

 $(v(0), h(0), m(0)) = (0, 0, m_0), g, \gamma > 0$ u motor force, D = D(v, h) air resistance Constraints: $0 \le u \le u_{max}$ and $m(t_f) = m_1$ (empty) Optimization criterion: $\max_u h(t_f)$

5 min exercise

Solve the optimal control problem

$$\min \int_0^1 u^4 dt + x(1)$$
$$\dot{x} = -x + u$$
$$x(0) = 0$$

Problem Formulation (2)

$$\min_{i:[0,t_f]\to U} \int_0^{t_f} L(x(t),u(t)) dt + \phi(x(t_f))$$

$$\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0$$

$$\psi(x(t_f)) = 0$$

Note the differences compared to standard form:

• r end constraints

$$\Psi(t_f, x(t_f)) = \begin{pmatrix} \Psi_1(t_f, x(t_f)) \\ \vdots \\ \Psi_r(t_f, x(t_f)) \end{pmatrix} = 0$$

t_f free variable (i.e., not specified a priori)
time varying final penalty, *φ*(*t_f*, *x*(*t_f*))

The Maximum Principle will be generalized in the next lecture!

Anders Rantzer Lecture 10, Optimal Co

- Introduction
- Static Optimization with Constraints
- Optimization with Dynamic Constraints

Summary

- The Maximum Principle
- Examples