Lecture 7: Anti-windup and friction compensation

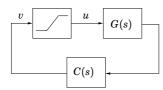
- Compensation for saturations (anti-windup)
- Friction models
- Friction compensation

Material

Lecture slides

- To be able to design and analyze antiwindup schemes for
 PID
 - state-space systems
 - and Kalman filters (observers)
- To understand common models of friction
- ▶ To design and analyze friction compensation schemes

Windup – The Problem



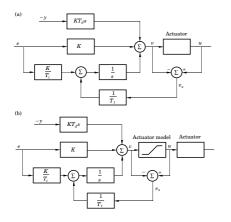
The feedback path is broken when *u* saturates

The controller C(s) is a dynamic system

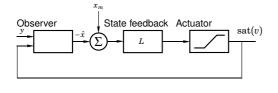
Problems when controller is unstable (or stable but not AS) Example: I-part in PID-controller

Anti-windup for PID-Controller ("Tracking")

Anti-windup (a) with actuator output available and (b) without

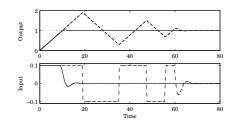


State feedback with Observer



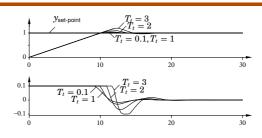
 $\hat{x} = A\hat{x} + B \operatorname{sat}(v) + K(y - C\hat{x})$ $v = L(x_m - \hat{x})$

Example-Windup in PID Controller



Dashed line: ordinary PID-controller Solid line: PID-controller with anti-windup

Choice of Tracking Time T_t



With very small T_t (large gain $1/T_t$), spurious errors can saturate the output, which leads to accidental reset of the integrator. Too large T_t gives too slow reaction (little effect).

The tracking time T_t is the design parameter of the anti-windup. Common choices: $T_t = T_i$ or $T_t = \sqrt{T_i T_d}$.

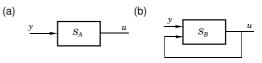
Antiwindup – General State-Space Controller

State-space controller:

$$\dot{x}_c(t) = Fx_c(t) + Gy(t)$$

$$u(t) = Cx_c(t) + Dy(t)$$

Windup possible if F is unstable and u saturates.



ldea:

Rewrite representation of control law from (a) to (b) such that: (a) and (b) have same input-output relation

(b) behaves better when feedback loop is broken, if S_B stable

 $[\]hat{x}$ is estimate of process state, x_m desired (model) state. Need model of saturation if $\mathrm{sat}(v)$ is not measurable

Antiwindup – General State-Space Controller

State-space controller without and with anti-windup:

Mimic the observer-based controller:

$$\dot{x}_{c} = Fx_{c} + Gy + K \underbrace{(u - Cx_{c} - Dy)}_{=0}$$

= $(F - KC)x_{c} + (G - KD)y + Ku$
= $F_{0}x_{c} + G_{0}y + Ku$

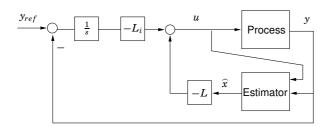
Design so that $F_0 = F - KC$ has desired stable eigenvalues Then use controller

$$\dot{x}_c = F_0 x_c + G_0 y + K u$$

 $u = \text{sat} (C x_c + D y)$

5 Minute Exercise

How would you do antiwindup for the following state-feedback controller with observer and integral action ?



$y = G + \Sigma + s^{-1} + C + \Sigma + s^{-1} + C + \Sigma + s^{-1} + C + S^{-1} +$

D

Saturation

Optimal control theory (later)

Multi-loop Anti-windup (Cascaded systems):

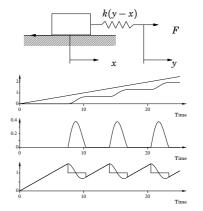
Difficult problem, several suggested solutions Turn off integrator in outer loop when inner loop saturates

Friction

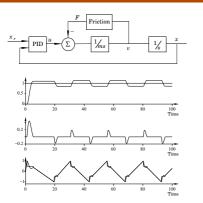
Almost is present almost everywhere

- Often bad
 - Friction in valves and mechanical constructions
- Somtimes good
- Friction in brakes
 Sometimes too small
 - Earthquakes
- Problems
 - How to model friction
 - How to compensate for friction

Stick-slip Motion

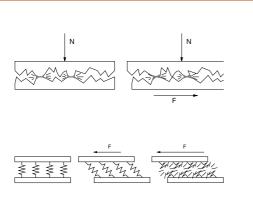


3 Minute Exercise



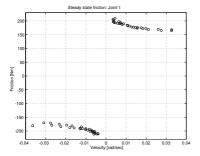
What are the signals in the previous plots? What model of friction has been used in the simulation?

Friction

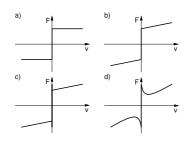


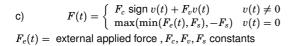
Stribeck Effect

For low velocity: friction increases with decreasing velocity Stribeck (1902)



Classical Friction Models



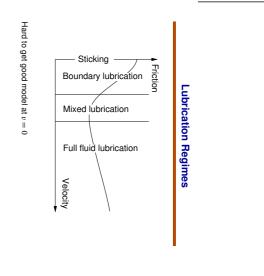


Demands on a model

To be useful for control the model should be

- sufficiently accurate,
- suitable for simulation,
- ▶ simple, few parameters to determine.
- physical interpretations, insight

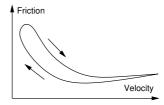
Pick the simplest model that does the job! If no stiction occurs the v = 0-models are not needed.



Frictional Lag

Dynamics are important also outside sticking regime Hess and Soom (1990)

Experiment with unidirectional motion $v(t) = v_0 + a \sin(\omega t)$ Hysteresis effect!



Advanced Friction Models

See PhD-thesis by Henrik Olsson

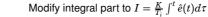
- Karnopp model
- Armstrong's seven parameter model
- Dahl model
- Bristle model
- Reset integrator model
- Bliman and Sorine
- Wit-Olsson-Åström

Friction Compensation

- Lubrication
 - Integral action (beware!)
- Dither
- Non-model based control
- Model based friction compensation
- Adaptive friction compensation

Integral Action

Deadzone - Modified Integral Action



- The integral action compensates for any external disturbance
- Good if friction force changes slowly ($v \approx \text{constant}$).
- \bullet To get fast action when friction changes one must use much integral action (small $T_i)$
- Gives phase lag, may cause stability problems etc

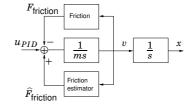
where input to integrator
$$\hat{e} = \begin{cases} e(t) - \eta & e(t) > \eta \\ 0 & |e(t)| < \eta \\ e(t) + \eta & e(t) < -\eta \end{cases}$$

Advantage: Avoid that small static error introduces limit cycle

Disadvantage: Must accept small error (will not go to zero)

Adaptive Friction Compensation

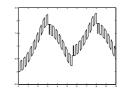
Coulomb Friction $F = a \operatorname{sgn}(v)$



Assumption: *v* measurable. Friction estimator:

 $\begin{array}{rcl} \dot{z} &=& k u_{PID} \, {\rm sgn}(v) \\ & \widehat{a} &=& z - k m |v| \\ & \widehat{F}_{\rm friction} &=& \widehat{a} \, {\rm sgn}(v) \end{array}$

The Knocker Combines Coulomb compensation and square wave dither



Tore Hägglund, Innovation Cup winner + patent 1997

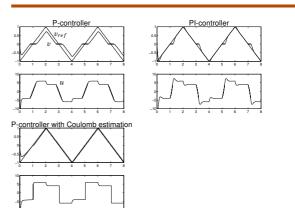
Remark: Careful with $\frac{d}{dt}|v|$ at v = 0.

Example–Friction Compensation

Velocity control with

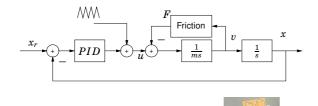
- a) P-controller
- b) PI-controller
- c) P + Coulomb estimation

Results



Mechanical Vibrator–Dither

Avoids sticking at v = 0 where there usually is high friction by adding high-frequency mechanical vibration (dither)



Cf., mechanical maze puzzle (labyrintspel)

Result: $e = a - \hat{a} \rightarrow 0$ as $t \rightarrow \infty$, since

$$\frac{de}{dt} = -\frac{d\hat{a}}{dt} = -\frac{dz}{dt} + km\frac{d}{dt}|v|$$

$$= -ku_{PID}\operatorname{sgn}(v) + km\dot{v}\operatorname{sgn}(v)$$

$$= -k\operatorname{sgn}(v)(u_{PID} - m\hat{v})$$

$$= -k\operatorname{sgn}(v)(F - \hat{F})$$

$$= -k(a - \hat{a})$$

$$= -ke$$

Next Lecture	
► Backlash	
 Quantization 	