
Institutionen för

REGLERTEKNIK

Nonlinear Control and Servo Systems (FRTN05)

Exam  May 4, 2011 at 08.00–13.00

Points and grades

All answers must include a clear motivation. The total number of points is 25. The

maximum number of points is specified for each subproblem. Most subproblems

can be solved independently of each other. Preliminary grades:

3: 12− 16.5 points

4: 17− 21.5 points

5: 22− 25 points

Accepted aid

All course material, except for the exercises and solutions to old exams, may be

used as well as standard mathematical tables and authorized “Formelsamling i

reglerteknik”. Pocket calculator.

Results

The exam results will be posted on the notice-board at the Department of Auto-

matic Control and on the course homepage

http://www.control.lth.se/course/FRTN05 within a week of the exam date.

You will have an opportunity to see your corrected exam. See the course home-

page for an exact date.

Note!

In many cases the sub-problems can be solved independently of each other.

Good Luck!
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Solutions to the exam in Nonlinear Control and Servo Systems (FRTN05)
2011–05–04

1.

a. The system

ẋ1 = x1(x
2
1 + x

2
2 − 2) − 4x1x

2
2

ẋ2 = 4x
2
1x2 + x2(x

2
1 + x

2
2 − 2)

is given. Assume that the stability properties of the origin are of interest.

With the help of V (x1, x2) = x
2
1 + x

2
2, perform a stability analysis of the

origin.

(2 p)

b. In the Nonlinear Control course much attention has, of course, been drawn

to the study of nonlinear systems. Give two examples of phenomena that

can occur for nonlinear systems but not for linear ones. (2 p)

Solution

a.

V̇ = x1 ẋ1 + x2 ẋ2 = 2(x
2
1 + x

2
2)(x

2
1 + x

2
2 − 2) < 0, ∀0 < x21 + x

2
2 < 2,

hence the system is locally asymptotically stable around the origin.

b. 1. Nonlinear systems can be locally stable, as for the previous example,

and yet still not be globally stable.

2. Nonlinear systems can have finite escape time.

2. Consider the system

ẋ1 = −x2 − 2x1 + u

ẋ2 = x1

Let u = −sign(x1 + x2). Determine the sliding set and the dynamics on
it. (3 p)

Solution
Let σ (x) = x1+ x2. The switching curve is given by all x such that σ (x) = 0.
We have that σ̇ (x) = ẋ1+ ẋ2 = −σ −sign(x1+ x2) = −σ −sign(σ ). Therefore
the sliding set is given by σ = x1 + x2 = 0 . The dynamics on the set is
given by

ẋ1 = −x1

ẋ2 = −x2

That is, the sliding dynamics is asymptotically stable.
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3. Consider the system

ẋ1 = x31 + x
2
1x2

ẋ2 = sat(x1) + u

a. Verify that the system is on strict feedback form. (1 p)

b. Design a controller using backstepping to globally stabilize the origin.

(2 p)
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Solution

a. With

f1(x1) = x31

�1(x1) = x21

f2(x1, x2) = sat(x1)

�2(x1, x2) = 1

the system can be written on the strict feedback form

ẋ1 = f1(x1) + �1(x1)x2

ẋ2 = f2(x1, x2) + �2(x1, x2)u

b. Start with the system ẋ1 = x
3
1 + x

2
1φ(x1) which can be stabilized using

φ(x1) = −2x1. Notice that φ(0) = 0. Take V1(x1) = x
2
1/2. To backstep,

define

ζ 2 = (x2 − φ(x1)) = x2 + 2x1,

to transfer the system into the form

ẋ1 = x31 + x
2
1(ζ 2 − 2x1) = −x

3
1 + x

2
1ζ 2

ζ̇ 2 = ẋ2 + 2ẋ1 = sat(x1) + u− 2x
3
1 + 2x

2
1ζ 2

Taking V = V1(x1) + ζ 22/2 as a Lyapunov function gives

V̇ = x1(−x
3
1 + x

2
1ζ 2) + ζ 2(u+ sat(x1) − 2x

3
1 + 2x

2
1ζ 2)

With

u = −sat(x1) + x
3
1 − 2x

2
1ζ 2 − ζ 2 = −sat(x1) − 3x

3
1 − 2x

2
1x2 − 2x1 − x2

we get

V̇ = −x41 − ζ 22 < 0 ∀(x1,ζ 2) ,= 0

The Lyapunov function is radially unbounded. Hence, the origin is globally

asymptotically stable.

4. Consider the equations of motion for a single linked robot:

M(q)q̈+ C(q, q̇)q̇+ �(q) = u.

Assume that M(q) is a positive scalar function for all q ,= 0, and that
Ṁ − 2C = 0.

a. Assuming that the gravity term �(q) = 0, show that the simple PD control
law u = −K (q− r)−Kdq̇, where r is constant, achieves asymptotic tracking
(i.e. limt→∞ q(t) = r).

(Hint : Use the Lyapunov candidate V = 1
2
q̇2M(q) + 1

2
(q− r)2K ) (3 p)
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b. Now assume that the gravitational term �(q) is present. Can you conclude
asymptotic tracking by using the same Lyapunov candidate? How can the

PD control law from (a) be modified to achieve the same effect in (b)?
(1 p)

c. Find a control law u = µ(q, q̇) such that

M(q)q̈+ C(q, q̇)q̇+ �(q) = u

becomes a linear system. (1 p)

Solution

a. The time derivative of V is

V̇ = q̇TMq̈+ 1/2q̇T Ṁ q̇+ q̇TK (q− r)

Solving for Mq̈ in the equations of motion formula and substituting the

resulting expression into V̇ yields

V̇ = q̇T(u+ K (q− r)).

Substituting the PD control law for u now gives

V̇ = −q̇TKd q̇≤ 0. (1)

To conclude asymptotic stability, suppose that V̇ = 0. Then (1) implies that
q̇ = q̈ = 0. From the equations of motion with the PD control we must have
that

0 = −K (q− r),

which implies that (q− r) = 0. From LaSalle’s theorem the equilibrium is
then asymptotically stable.

b. With gravitational term the PD control alone can not guarantee asymptotic

tracking (V̇ = q̇(u−�+K (q−r)). To remove the drawback of non asymptotic
tracking, add the gravitational term in u.

c. Put

u = M(q)aq+ C(q, q̇)q̇+ �(q).

Then the system dynamics becomes q̈ = aq, where the term aq is to be
chosen.

5. Consider the system

d3z

dt3
+
d2z

dt2
+
dz

dt
= −
1

3
z3 (2)

a. Show that the system can be written as a feedback connection as shown in

Figure 1, where P(s) is a transfer function and ψ is a static nonlinearity.
(1 p)

b. Calculate the describing function of the nonlinearity f (x) = 1
3
x3. (2 p)

(Hint:
∫ 2π
0
sin(x)4dx = 3π

4
)

c. Analyse the existence, amplitude and frequency of possible limit cycles.

(2 p)
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Σ

yr

P(s)

−ψ (⋅)

Figur 1 Figure for problem 5

Solution

a. Let ψ = 1/3z3. Then a Laplace transform between ψ and z results in

P =
1

s(s2 + s+ 1)
.

The nonlinearity is ψ = 1/3z3.

b. The function is odd, which implies that it is real.

b1 =
A3

3π

∫ 2π

0

sin(φ)4dφ =
A3

4
,

which gives that the describing function

N(A) =
A2

4
.

c. We want to find out the points where ImP(iω ) = 0. Some calculations gives
that

ImP(iω ) =
−(1−ω 2)

ω ((1−ω )2 +ω 2)
,

which in its turn gives that ω = 1. Finally, this yields that

P(i) = −1 = −
1

N(A)
= −

4

A2
[ A = 2.

To conclude: The frequency of the limit cycle is ω = 1 rad/s and its ampli-
tude is A = 2.

6. Consider the van der Pol equation with driving term

ẋ1 = x2

ẋ2 = (1− x
2
1)x2 − x1 + qcos(ω t)

y = x1

A reduced order observer can be constructed by introducing the new variable

z = x2 − 2y+ y
3/3,
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and its estimate update law is

˙̂z = −ẑ− 3y+ y3/3+ qcos(ω t).

(The estimate of x2 will then be given by x̂2 = ẑ+ 2y− y
3/3 ).

Show that the error dynamics for er = z − ẑ is linear and asymptotically
stable ( i.e., exponentially stable). (2 p)

Solution

er = z− ẑ[ ėr = ż− ˙̂z

ż= ẋ2 − 2ẏ+ 3
y2

3
ẏ = (1− x21)x2 − x1 + qcos(ω t) − 2x2 + x

2
1x2

= −x1 − x2 + qcos(ω t)

˙̂z= −ẑ− 3y+ y3/3+ qcos(ω t)

[ėr = ż− ˙̂z = (1− x
2
1)x2 − x1 − 2x2 + x

2
1x2 + ẑ+ 3x1 − x

3
1/3 = ... =

= −z+ ẑ= −er

7. A body under influence of a force obeys the equation

mẍ = F, Fmin ≤ F ≤ Fmax .

Assume for simplicity that m = 1, Fmin = −1 = −Fmax , and put F = u.
Investigate how u = u(x, ẋ) should be chosen to move the body in shortest
possible time from an arbitrary state (x, ẋ) to rest in the origin. Also, draw
a phase plane diagram. (3 p)

Solution

The equations of motion are

ẋ1 = x2, x1(0) = x0, x1(T) = 0,

ẋ2 = u, x2(0) = v0, x2(T) = 0,

u ∈ [−1, 1].

The problem to solve is ∫ T

0

dt.

The Hamilton function is

H = 1+ λ1x2 + λ2u,

which implies that the adjoint equations are

λ̇1 = −
�H

�x1
= 0, [ λ1 = λ01,

λ̇2 = −
�H

�x2
= −λ1, [ λ2 = λ02 − λ01t.
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Figur 2 Phase plane for problem 7.

We now see that σ = λ2, which means that the control signal changes sign
at most one time.

Through

dx1

dx2
=
x2

u
,[ x1 =

x22
u
+ C

the switching curve can be decided, and is x1 = −sign(x2)(x
2
2/2) (draw the

phase plane curve). This implies that the control signal can be written as

u = −sign(x1 + sign(x2)(x
2
2/2)).

A phase plane is shown in Figure 1.
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