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Nonlinear Control and Servo Systems

Lecture 9

• Backlash

• Quantization

Today’s Goal

◮ To know models and compensation methods for backlash

◮ Be able to analyze the effect of quantization errors

Quantizer
u

y

D/2

D

Material

◮ Lecture slides

Note: We are using analysis methods from previous lectures

(describing functions, small gain theorem etc.), and these have

references to the course book(s).

Backlash

Backlash (glapp) is

◮ present in most mechanical and hydraulic systems

◮ increasing with wear

◮ bad for control performance

◮ may cause oscillations

Note: A gear box without any backlash will not work if

temperature rises

Linear and Angular Backlash
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Example: Parallel Kinematic Robot

Gantry-Tau robot: Need backlash-free gearboxes for high

precision

EU-project: SMErobot
TM

www.smerobot.org

"Rotational to Linear motion"

Rack-and-pinion
(Swe. “kuggstång”)

Gear box

Motor connects

here

Backlash in gearbox and rails

Remedy:

Use two motors, possible to motors in opposite directions: One

motor can act as spring and brake to "reduce" backlash.
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Backlash compensation

From master thesis by B. Brochier, Control of a Gantry-Tau Structure, LTH, 2006

Dead-zone Model

xin − xout
(θ in − θ out)

D

Force

(Torque)

◮ Often easier to use model of the form xin(⋅) → xout(⋅)

◮ Uses implicit assumption: Fout = Fin,Tout = Tin. Can be

wrong, especially when “no contact”.

The Standard Model

Assume instead

◮ ẋout = ẋin when “in contact”

◮ ẋout = 0 when “no contact”

◮ No model of forces or torques needed/used

xin
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D

D

xout
θ out

Servo motor with Backlash

P-control of servo motor

+

θ re f u θ̇ in θ in θ outb
1+sT

1
s

−1

K

How does the values of K and D affect the behavior?

Effects of Backlash
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Oscillations for K = 4 but not for K = 0.25 or K = 1. Why?

Limit cycle becomes smaller if D is made smaller, but it never

disappears

Describing Function for a Backlash
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If A > D then

N(A) =
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else N(A) = 0.

1 minute exercise

Study the plot for the describing function for the backlash on the

previous slide.

Where does the function −
1

N(A)
end for A→∞ and why?

Describing Function Analysis
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K = 0.25

K = 1
K = 4

−1/N(A)
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Input and output of backlash

◮ For K = 4,D = 0.2: intersection between G( jω ) and

−1/N(A) occurs for A = 0.33,ω = 1.24

◮ Simulation: A = 0.33, ω = 2π /5.0 = 1.26
Describing function predicts oscillation well!
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Limit cycles?

The describing function method is only approximate.

Can one determine conditions that guarantee stability?

+

u θ̇ in θ in θ outb
1+sT

1
s

−1

K

Note: θ in and θ out will not converge to zero

Idea: Consider instead θ̇ in and θ̇ out

Backlash Limit Cycles

Rewrite the system as

G1(s)

θ in θ out

G(s)

θ̇ in θ̇ out
“BL”

Note that the block “BL” satisfies

θ̇ out =

{
θ̇ in in contact

0 otherwise

Analysis by passivity

Backlash block is passive (from θ̇ in to θ̇ out)

Hence closed loop is stable if G(s) is asymptotically stable and

strictly passive, ı.e., G should have all its poles (strictly) in the

left half-plane and there should exist some ǫ > 0 such that

Re G(iω − ǫ) ≥ 0 for all ω .

Analysis by small gain theorem

Backlash block has gain ≤ 1 (from θ̇ in to θ̇ out)

Hence closed loop is stable if G(s) asymptotically stable and

pG(iω )p < 1 for all ω

Analysis by circle criterion

Backlash block has gain in the sector [0, 1] (from θ̇ in to θ̇ out)

−1/k1 = ∞ and −1/k2 = −1

Hence closed loop is stable if Re G(iω ) > −1 for all ω .

(For our motor example this proves stability when K < 1)

Backlash compensation

◮ Mechanical solutions

◮ Dead-zone

◮ Linear controller design

◮ Backlash inverse

Linear Controller Design

Introduce phase lead to avoid the −1/N(A) curve:

Instead of only a P-controller we choose K (s) = k1+sT2
1+sT1

+

u θ̇ in θ in θ out
b

1+sT
1
s

−1

k1+sT2
1+sT1

Controller K (s) = k1+sT2
1+sT1

Simulation with T1 = 0.5,T2 = 2.0
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Nyquist Diagrams

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10
 

with filter

without filter

No limit cycle, oscillation removed!
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Backlash Inverse

xin

D

D

xout

u xin xout

Idea: Let xin jump ±2D when ẋout should change sign. Works if

the backlash is directly on the system input!

Backlash Inverse

D̂

−D̂

u

xin

xin(t) =






u+ D̂ if u(t) > u(t−)

u− D̂ if u(t) < u(t−)
xin(t−) otherwise

If

◮ D̂ = D then xout(t) = u(t) (perfect compensation)

◮ D̂ < D: Under-compensation (decreased backlash)

◮ D̂ > D: Over-compensation, often gives oscillations

Example–Perfect compensation

Motor with backlash on input, PD-controller
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Example–Under compensation
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Backlash–More advanced models

Warning: More detailed models needed sometimes

Model what happens when contact is attained

Model external forces that influence the backlash

Model mass/moment of inertia of the backlash.

Example: Parallel Kinematic Robot

Gantry-Tau robot:

Need backlash-free gearboxes for very high precision

EU-project: SMErobot
TM

http://www.smerobot.org

"Rotational to Linear motion"

Rack-and-pinion
(Swe. “kuggstång”)

Gear box

Motor connects

here
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Backlash in gearbox and rails

Remedy:

Use two motors, possible to run motors in opposite directions:

One motor can act as spring and brake to "reduce" backlash.

Need measurements on both motor and arm-side.

Backlash compensation

From master thesis by B. Brochier, Control of a Gantry-Tau Structure, LTH, 2006
See also master theses by j. Schiffer and L. Halt, 2009.

Quantization

Quantizer
u

y

D/2

D

How accurate should the converters be? (8-14 bits?)

What precision is needed in computations? (8-64 bits?)

◮ Quantization in A/D and D/A converters

◮ Quantization of parameters

◮ Roundoff, overflow, underflow in operations

NOTE: Compare with (different) limits for “quantizer/dead-zone

relay” in Lecture 6.

Linear Model of Quantization

Model the quantization error as a stochastic signal e

independent of u with rectangular distribution over the

quantization size.

Works if quantization level is small compared to the variations

in u

yy uu

e

Q +

Rectangular noise distribution over [− D
2
, D
2
] has the variance

Var(e) =

∫ +∞

−∞
e2 fe de =

∫ D/2

−D/2
e2
1

D
de =

D2

12

Describing Function for Deadzone Relay

1

D

u

e

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

e

u

Lecture 6 [ N(A) =
4

π A

√
1− D2/A2, A > D and zero

otherwise

Describing Function for Quantizer

Use the result for a one bit quantizer (lec 6). See exercise.

e

Quantizer
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N(A) =






0 A < D
2
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Describing Function for Quantizer

0 2 4
0

1

A/δ

N
(
A
)

The maximum value is 4/π ( 1.27 for A ( 0.71D.

Predicts limit cycle if Nyquist curve intersects negative real axis

to the left of −π /4 ( −0.79.

Should design for gain margin > 1/0.79= 1.27!

Note that reducing D only reduces the size of the limit

oscillation, the oscillation does not vanish completely.

5 minute exercise
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How does the shape of the describing function relate to the

number of possible limit cycles and their stability.

What if the Nyquist plot

◮ intersects the negative real axis at −0.80?

◮ intersects the negative real axis at −1?

◮ intersects the negative real axis at −2?
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Example – Motor with P-controller.

Roundoff at input, D = 0.2. Nyquist curve intersects at −0.5K .

Hence stable for K < 2 without quantization. Stable oscillation

predicted for K > 2/1.27 = 1.57.

0 50
0

1
O

u
tp

u
t

(a)

0 50
0

1

O
u

tp
u

t

(b)

0 50
0

1

Time

O
u

tp
u

t

(c)

K = 0.8

K = 1.2

K = 1.6

Example – Double integrator with 2nd order controller

Nyquist curve
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Quantization at A/D converter

Double integrator with 2nd order controller, D = 0.02
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Describing function: Ay ( D/2 = 0.01, period T = 39

Simulation: Ay = 0.01 and T = 28

Quantization at D/A converter

Double integrator with 2nd order controller, D = 0.01
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Describing function: Au ( D/2 = 0.005, period T = 39
Simulation: Au = 0.005 and T = 39
Better prediction, since more sinusoidal signals

Quantization Compensation

◮ Use improved converters, (small quantization errors/larger

word length)

◮ Linear design, avoid unstable controller, ensure gain

margin>1.3

◮ Use the tracking idea from

anti-windup to improve

D/A converter

controller D/A
Digital Analog

+ −

◮ Use analog dither,

oversampling and digital

low-pass filter to improve

accuracy of A/D converter

A/D filter decim.+

Today’s Goal

◮ To know models and compensation methods for backlash

◮ Be able to analyze the effect of quantization errors

Quantizer
u

y

D/2

D

Next Lecture

◮ Optimization.

Read chapter 18 in [Glad & Ljung] for preparation.


