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Nonlinear Control Design

Lecture 8

◮ Exact-linearization

◮ Lyapunov-based design
◮ Lab 2
◮ Adaptive control
◮ Backstepping

◮ Hybrid / Piece-wise linear control
◮ NOTE: Only overview!

Exact Feedback Linearization

Idea: Find state feedback u = u(x,v) so that nonlinear system

ẋ = f (x) + �(x)u

turns into linear system

ẋ = Ax + Bv

and then apply linear control design method.

Exact linearization: example [one-link robot]

{

θτ

m

m{2θ̈ + dθ̇ +m{� cosθ = u

where d is the viscous damping.

The control u = τ is the applied torque

Design state feedback controller u = u(x) with x = (θ , θ̇ )T

Block diagram
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m{2θ̈ + dθ̇ +m{� cosθ = u

θ̈ =
1

m{2
(
−dθ̇ −m{� cosθ + u

)

Introduce new control variable v and let

u = m{2v+ dθ̇ +m{� cosθ

Then

θ̈ = v

Choose e.g. a PD-controller

v = v(θ , θ̇) = kp(θ ref − θ ) − kdθ̇

This gives the closed-loop system:

θ̈ + kdθ̇ + kpθ = kpθ ref

Hence, u = m{2[kp(θ − θ ref) − kdθ̇ ] + dθ̇ +m{� cosθ

Multi-link robot (n-joints)

x

y

z θ2

θ1
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General form

M(θ )θ̈ + C(θ , θ̇ )θ̇ + G(θ ) = u, θ ∈ Rn

Called fully actuated if n indep. actuators,

M n$ n inertia matrix, M = MT > 0
Cθ̇ n$ 1 vector of centrifugal and Coriolis forces

G n$ 1 vector of gravitation terms

Computed torque

The computed torque

(also known as "Exact linearization", "dynamic inversion" , etc. )

u = M(θ )v+ C(θ , θ̇ )θ̇ + G(θ )

v = Kp(θ re f − θ ) − Kdθ̇ ,
(1)

gives closed-loop system

θ̈ + Kdθ̇ + Kpθ = KpθRe f

The matrices Kd and Kp can be chosen diagonal (no

cross-terms) and then this decouples into n independent

second-order equations.

Identify FF and FB-part!

Cascade control - revisited

For systems with one control signal and many outputs:

GR2 (s) GR1 (s) GP2 (s)GP1 (s)

−1

−1

u y1 y2r2 r1
ΣΣ

◮ GR1 (s) controls the subsystem GP1(s) ([ Gy1r1(s) ( 1)
◮ GR2 (s) controls the subsystem GP2(s)

Often used in motion control, e.g., robotics, with cascaded

velocity and position controllers, BUT should have velocity

reference feedforward!!
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GR2 (s) GR1 (s)
1

s
GP1(s)

−1

−1

u

vel posr1posre f
ΣΣ

velre f τ re f

Example of couplings

Example: Couplings and interaction: "good"/"bad"

"Robot Furuta pendulum": Underactuated – coupling as control action

"Ordinary" Robot control:

Often cascaded PI-controllers for each joint
(inner velocity and outer position loop)

Feedforward for
◮ disturbance rejection between joints
◮ velocity and torque reference (improved tracking!)

Lyapunov-Based Control Design Methods

ẋ = f (x,u)

◮ Find stabilizing state feedback u = u(x)

◮ Verify stability through Lyapunov function

◮ Methods depend on structure of f

Examples are energy shaping as in Lab 2 and e.g.

Back-stepping control design, which require certain f

discussed later.

Lab 2 : Energy shaping for swing-up control

[movie]

Use Lyapunov-based design for swing-up control.

Lab 2 : Energy shaping for swing-up control

Rough outline of method to get the pendulum to the upright

position

◮ Find expression for total energy E of the pendulum

(potential energy + kinetic energy)

◮ Let En be energy in upright position.

◮ Look at deviation V = 1
2
(E − En)

2 ≥ 0

◮ Find "swing strategy" of control torque u such that dV
dt
≤ 0

Example of Lyapunov-based design

Consider the nonlinear system

ẋ1 = −3x1 + 2x1x
2
2 + u (2)

ẋ2 = −x
3
2 − x2,

Find a nonlinear feedback control law which makes the origin

globally asymptotically stable.

We try the standard Lyapunov function candidate

V (x1, x2) =
1

2

(
x21 + x

2
2

)
,

which is radially unbounded, V (0, 0) = 0, and

V (x1, x2) > 0 ∀(x1, x2) ,= (0, 0).

Example - cont’d

V̇ = ẋ1x1 + ẋ2x2 = (−3x1 + 2x1x
2
2 + u)x1 + (−x

3
2 − x2)x2

= −3x21 − x
2
2+ux1+2x

2
1x
2
2 − x

4
2

We would like to have

V̇ < 0 ∀(x1, x2) ,= (0, 0)

Alt.1

Inserting the control law, u = −x3
1
, we get

V̇ = −3x21−x
2
2−x

4
1+2x

2
1x
2
2−x

4
2 = −3x

2
1−x

2
2−

(
x21 − x

2
2

)2
< 0, ∀x ,= 0

Alt.2

Inserting the control law, u = −2x1x
2
2, we get

V̇ = −3x21−x
2
2−2x

2
1x
2
2 + 2x

2
1x
2
2︸ ︷︷ ︸

=0

−x42 = −3x
2
1−x

2
2−x

4
2 < 0, ∀x ,= 0

Both control alternatives gives global asymptotic stability of the

origin.
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Consider the system

ẋ1 = x
3
2

ẋ2 = u
(3)

Find a globally asymptotically stabilizing control law u = u(x).

Attempt 1: Try the standard Lyapunov function candidate

V (x1, x2) =
1

2

(
x21 + x

2
2

)
,

which is radially unbounded, V (0, 0) = 0, and

V (x1, x2) > 0 ∀(x1, x2) ,= (0, 0).

V̇ = ẋ1x1 + ẋ2x2 = x
3
2 ⋅ x1 + u ⋅ x2 = x2 (x

2
2x1 + u)︸ ︷︷ ︸
−x2

= −x22 ≤ 0

where we chose

u = −x2 − x
2
2x1

However V̇ = 0 as soon as x2 = 0 (Note: x1 could be anything).

According to LaSalle’s theorem the set

E = {xpV̇ = 0} = {(x1, 0)}∀x1

What is the largest invariant set M?

Plugging in the control law u = −x2 − x
2
2x1, we get

ẋ1 = x
3
2

ẋ2 = −x2 − x
2
2x1

(4)

and we see that if we start anywhere on the line {(x1, 0)} we

will stay in the same point as both ẋ1 = 0 and ẋ2 = 0, thus M=E

and we will not converge to the origin, but get stuck on the line

x2 = 0.

Draw phase-plot with e.g., pplane and study the behaviour.

Attempt 2:

ẋ1 = x
3
2

ẋ2 = u
(5)

Try the Lyapunov function candidate

V (x1, x2) =
1

2
x21 +

1

4
x42,

which satisfies

◮ V (0, 0) = 0

◮ V (x1, x2) > 0, ∀(x1, x2) ,= (0, 0).

◮ radially unbounded,

dV

dt
= ẋ1x1 + ẋ2x

3
2 = x

3
2(x1 + u) = −x

4
2 ≤ 0

u = −x1 − x2if we use u = −x1 − x2

With

u = −x1 − x2

we get the dynamics

ẋ1 = x
3
2

ẋ2 = −x1 − x2
(6)

V̇ = 0 if x2 = 0, thus

E = {xpV̇ = 0} = {(x1, 0)}∀x1

However, now the only possibility to stay on x2 = 0 is if x1 = 0, (

else ẋ2 ,= 0 and we will leave the line x2 = 0).

Thus, the largest invariant set

M = (0, 0)

According to the Invariant Set Theorem (LaSalle) all solutions

will end up in M and so the origin is GAS.

Draw phase-plot with e.g., pplane and study the behaviour.

Adaptive Noise Cancellation Revisited

u b
s+a

bb
s+ba

x

x̂

x̃+
−

ẋ + ax = bu

˙̂x + âx̂ = b̂u

Introduce x̃ = x − x̂, ã = a− â, b̃ = b− b̂.

Want to design adaptation law so that x̃→ 0

Let us try the Lyapunov function

V =
1

2
(x̃2 + γ aã

2 + γ bb̃
2)

V̇ = x̃ ˙̃x + γ aã ˙̃a+ γ bb̃
˙̃
b =

= x̃(−ax̃ − ãx̂ + b̃u) + γ aã ˙̃a+ γ bb̃
˙̃
b = −ax̃2

where the last equality follows if we choose

˙̃a = − ˙̂a =
1

γ a
x̃ x̂

˙̃
b = −

˙̂
b = −

1

γ b
x̃u

Invariant set: x̃ = 0.

This proves that x̃→ 0.

(The parameters ã and b̃ do not necessarily converge: u " 0.)

Back-Stepping Control Design

We want to design a state feedback u = u(x) that stabilizes

ẋ1 = f (x1) + �(x1)x2

ẋ2 = u
(7)

at x = 0 with f (0) = 0.

Idea: See the system as a cascade connection. Design

controller first for the inner loop and then for the outer.

u x2 x1∫
�(x1)

f ()

∫

Suppose the partial system

ẋ1 = f (x1) + �(x1)v̄

can be stabilized by v̄ = φ(x1) and there exists Lyapunov fcn

V1 = V1(x1) such that

V̇1(x1) =
dV1

dx1

(
f (x1) + �(x1)φ(x1)

)
≤ −W(x1)

for some positive definite function W.
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The Trick

Equation (??) can be rewritten as

ẋ1 = f (x1) + �(x1)φ(x1) + �(x1)[x2 − φ(x1)]

ẋ2 = u

−φ (x1)

u x2 x1∫
�(x1)

f + �φ

∫

Introduce new state ζ = x2 − φ(x1) and control v = u− φ̇ :

ẋ1 = f (x1) + �(x1)φ(x1) + �(x1)ζ

ζ̇ = v

where

φ̇(x1) =
dφ

dx1
ẋ1 =

dφ

dx1

(
f (x1) + �(x1)x2

)

−φ̇ (x1)

u ζ x1∫
�(x1)

f + �φ

∫

Consider V2(x1, x2) = V1(x1) + ζ 2/2. Then,

V̇2(x1, x2) =
dV1

dx1

(
f (x1) + �(x1)φ(x1)

)
+
dV1

dx1
�(x1)ζ + ζ v

≤ −W(x1) +
dV1

dx1
�(x1)ζ + ζ v

Choosing

v = −
dV1

dx1
�(x1) − kζ , k > 0

gives

V̇2(x1, x2) ≤ −W(x1) − kζ
2

Hence, x = 0 is asymptotically stable for (??) with control law

u(x) = φ̇(x) + v(x).

If V1 radially unbounded, then global stability.

Back-Stepping Lemma

Lemma: Let z = (x1, . . . , xk−1)
T and

ż = f (z) + �(z)xk

ẋk = u

Assume φ(0) = 0, f (0) = 0,

ż = f (z) + �(z)φ(z)

stable, and V (z) a Lyapunov fcn (with V̇ ≤ −W). Then,

u =
dφ

dz

(
f (z) + �(z)xk

)
−
dV

dz
�(z) − (xk − φ(z))

stabilizes x = 0 with V (z) + (xk − φ(z))2/2 being a Lyapunov

fcn.

Strict Feedback Systems

Back-stepping Lemma can be applied to stabilize systems on
strict feedback form:

ẋ1 = f1(x1) + �1(x1)x2

ẋ2 = f2(x1, x2) + �2(x1, x2)x3

ẋ3 = f3(x1, x2, x3) + �3(x1, x2, x3)x4

...

ẋn = fn(x1, . . . , xn) + �n(x1, . . . , xn)u

where �k ,= 0

Note: x1, . . . , xk do not depend on xk+2, . . . , xn.

Back-Stepping

Back-Stepping Lemma can be applied recursively to a system

ẋ = f (x) + �(x)u

on strict feedback form.

Back-stepping generates stabilizing feedbacks φ k(x1, . . . , xk)
(equal to u in Back-Stepping Lemma) and Lyapunov functions

Vk(x1, . . . , xk) = Vk−1(x1, . . . , xk−1) + [xk − φ k−1]
2/2

by “stepping back” from x1 to u

Back-stepping results in the final state feedback

u = φn(x1, . . . , xn)

Example

Design back-stepping controller for

ẋ1 = x
2
1 + x2, ẋ2 = x3, ẋ3 = u

Step 0 Verify strict feedback form

Step 1 Consider first subsystem

ẋ1 = x
2
1 + φ1(x1), ẋ2 = u1

where φ1(x1) = −x
2
1
− x1 stabilizes the first equation. With

V1(x1) = x
2
1
/2, Back-Stepping Lemma gives

u1 = (−2x1 − 1)(x
2
1 + x2) − x1 − (x2 + x

2
1 + x1) = φ2(x1, x2)

V2 = x
2
1/2+ (x2 + x

2
1 + x1)

2/2

Step 2 Applying Back-Stepping Lemma on

ẋ1 = x
2
1 + x2

ẋ2 = x3

ẋ3 = u

gives

u = u2 =
dφ2
dz

(
f (z) + �(z)xn

)
−
dV2

dz
�(z) − (xn − φ2(z))

=
�φ2
�x1

(x21 + x2) +
�φ2
�x2
x3 −

�V2
�x2

− (x3 − φ2(x1, x2))

which globally stabilizes the system.
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Hybrid Control

Control problems where there is a mixture between continuous

states and discrete state variables.

Continuous states: position, velocity, temperature, pressure

Discrete states: on/off variables, controller modes, loss of

actuators, loss of sensors, relays, etc

Discontinuous differential equations

Much active field, much left to understand

Example of hybrid control

Control law that switches between different modes, e.g.

between

◮ Time optimal control – during large set point changes

◮ Linear control – close to set point

Aircraft Example

2

K1

+

+

K

-

-n z

αlim

e1

e2

α

2δ

1

q, α

δ

max

r

δ

(Branicky, 1993)

Phase Plane
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No common quadratic Lyapunov function exists.

A1 =

[
−5 −4
−1 −2

]
A2 =

[
−2 −4
20 −2

]

Piecewise quadratic Lyapunov functions

V (x) =

{
x∗Px if x1 < 0
x∗Px +ηx2

1
if x1 ≥ 0

The matrix inequalities

A∗
1P+ PA1 < 0

P > 0

A∗
2(P +ηE∗E) + (P +ηE∗E)A2 < 0

P+ηE∗E > 0

with E = [1 0], have the solution P = diag{1, 3}, η = 7.

Flower Example

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

, −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3


