► To be able to design and analyze antiwindup schemes for

Nonlinear Control and Servo Systems

Lecture 7

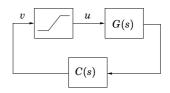
- Compensation for saturations (anti-windup)
- Friction models
- Friction compensation

- - state-space systems,
 - and Kalman filters (observers).
 - ▶ (polynomial designs (RST-controllers)),
- ▶ To understand common models of friction.
- ▶ To design and analyze friction compensation schemes.

Material

- ► Lecture slides
- ▶ Handout from CCS book, pp. 310-313, 331-336
- ► Handout from PhD-thesis by Henrik Olsson, 1996

Windup – The Problem



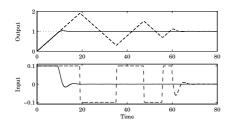
The feedback path is broken when u saturates

The controller C(s) is a dynamic system

Problems when controller is unstable (or stable but not AS)

Example: I-part in PID-controller

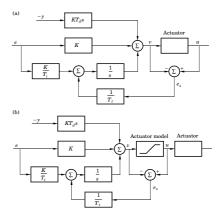
Example-Windup in PID Controller



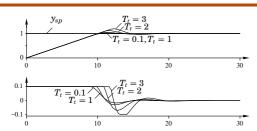
Dashed line: ordinary PID-controller Solid line: PID-controller with anti-windup

Anti-windup for PID-Controller ("Tracking")

Anti-windup (a) with actuator output available and (b) without



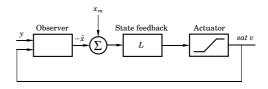
Choice of Tracking Time T_t



With very small T_t (large gain $1/T_t$), spurious errors can saturate the output, which leads to accidental reset of the integrator. Too large T_t gives too slow reaction (little effect).

The tracking time T_t is the design parameter of the anti-windup. Common choices: $T_t = T_i$ or $T_t = \sqrt{T_i T_d}$.

State feedback with Observer



$$\dot{\hat{x}} = A\hat{x} + B \operatorname{sat} v + K(y - C\hat{x})$$

$$v = L(x_m - \hat{x})$$

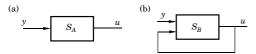
 \hat{x} is estimate of process state, x_m desired (model) state. Need model of saturation if sat v is not measurable

Antiwindup – General State-Space Controller

State-space controller:

$$\dot{x}_c(t) = Fx_c(t) + Gy(t)
u(t) = Cx_c(t) + Dy(t)$$

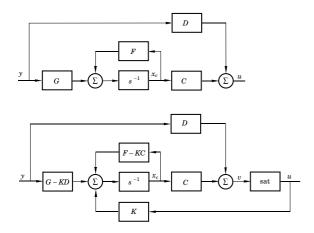
Windup possible if F is unstable and u saturates.



Idea: Rewrite representation of control law from (a) to (b). such that:

- (a) and (b) have same input-output relation
- (b) behaves better when feedback loop is broken, if $S_{\it B}$ stable

State-space controller without and with anti-windup:



Antiwindup - Polynomial Controller

Let $A_{aw}(s)$ be the desired characteristic polynomial of the anti-windup observer. Adding $A_{aw}(s)$ to (both sides of)

$$Ru = Tr - Sy$$

yields

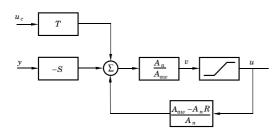
$$A_{aw}u = Tr - Sy + (A_{aw} - R)u$$

This suggests the controller with anti-windup

$$A_{aw}v = Tr - Sy + (A_{aw} - R)u$$

$$u = sat v$$

A Generalization



The freedom in A_n can be used to shape the response to errors due to saturation

Antiwindup – General State-Space Controller

Mimic the observer-based controller:

$$\dot{x}_c = Fx_c + Gy + K \underbrace{(u - Cx_c - Dy)}_{=0}$$

$$= (F - KC)x_c + (G - KD)y + Ku$$

$$= F_0x_c + G_0y + Ku$$

Design so that $F_0 = F - KC$ has desired stable eigenvalues Then use controller

$$\dot{x}_c = F_0 x_c + G_0 y + K u$$
 $u = \text{sat} (C x_c + D y)$

Polynomial Controller Design

Process A(p)y(p) = B(p)u(p) and polynomial controller (RST-controller)

$$R(p)u = T(p)u_c - S(p)y, \quad p = d/dt$$

gives the closed-loop system

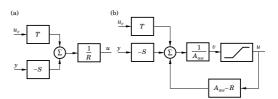
$$y = \frac{BT}{AR + BS}r = \frac{B_m}{A_m}r$$

where B_m/A_m is the desired response model. Choose ${\cal R}$ and ${\cal S}$ such that

$$AR + BS = A_m A_o$$

where A_o corresponds to observer dynamics.

Antiwindup – Input Output Form

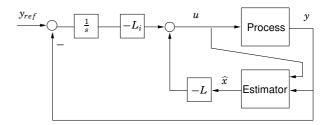


Common choices

- $ightharpoonup A_{aw} = A_o$ (same as observer)
- $ightharpoonup A_{aw} = R$ (no antiwindup)

5 Minute Exercise

How would you do antiwindup for the following state-feedback controller with observer and integral action?



Saturation

A more systematic treatment?

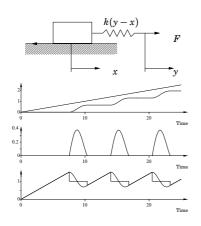
Interested students: Look at articles by Teel, Packard, Dahleh Optimal control theory (later)

Multi-loop Anti-windup (Cascaded systems)

Difficult problem, several suggested solutions

Turn off integrator in outer loop when inner loop saturates

Stick-slip Motion



3 Minute Exercise

What are the signals in the previous plots? What model of friction has been used in the simulation?

Official

Almost is present almost everywhere

- Often bad
 - Friction in valves and mechanical constructions

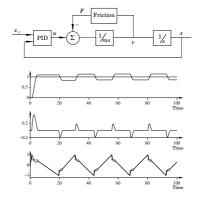
Friction

- Somtimes good
 - ► Friction in brakes
- ► Sometimes too small
 - Earthquakes

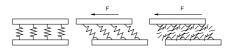
Problems

- ► How to model friction
- ► How to compensate for friction

Position Control of Servo with Friction - Hunting

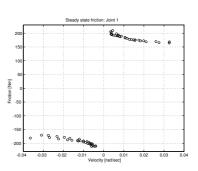


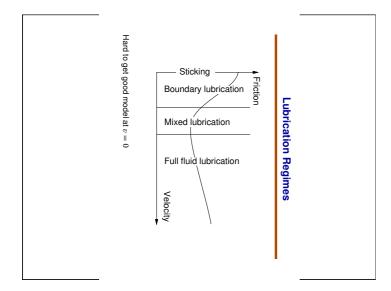
Friction



Stribeck Effect

For low velocity: friction increases with decreasing velocity Stribeck (1902)



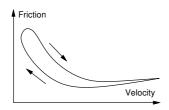


Frictional Lag

Dynamics are important also outside sticking regime Hess and Soom (1990)

Experiment with unidirectional motion $v(t) = v_0 + a \sin(\omega t)$

Hysteresis effect!



Advanced Friction Models

See handout from Olsson's PhD-thesis

- ► Karnopp model
- Armstrong's seven parameter model
- ▶ Dahl model
- ▶ Bristle model
- ► Reset integrator model
- ▶ Bliman and Sorine
- ▶ Wit-Olsson-Åström

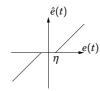
Friction Compensation

- ► Lubrication
- ► Integral action (beware!)
- Dither
- ► Non-model based control
- Model based friction compensation
- ► Adaptive friction compensation

Deadzone - Modified Integral Action

Modify integral part to $I = \frac{K}{T} \int_{-\tau}^{t} \hat{e}(t) d\tau$

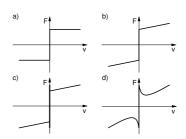
where input to integrator
$$\hat{e} = \left\{ \begin{array}{ll} e(t) - \eta & e(t) > \eta \\ 0 & |e(t)| < \eta \\ e(t) + \eta & e(t) < -\eta \end{array} \right.$$



Advantage: Avoid that small static error introduces limit cycle

Disadvantage: Must accept small error (will not go to zero)

Classical Friction Models



c)
$$F(t) = \begin{cases} F_c \operatorname{sign} v(t) + F_v v(t) & v(t) \neq 0 \\ \max(\min(F_e(t), F_s), -F_s) & v(t) = 0 \end{cases}$$

$F_e(t) =$ external applied force , F_c, F_v, F_s constants

Demands on a model

To be useful for control the model should be

- sufficiently accurate,
- suitable for simulation,
- ▶ simple, few parameters to determine.
- physical interpretations, insight

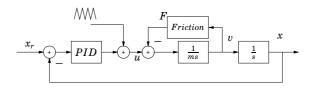
Pick the simplest model that does the job! If no stiction occurs the $v=0\mbox{-models}$ are not needed.

Integral Action

- The integral action compensates for any external disturbance
- Good if friction force changes slowly ($v \approx \text{constant}$).
- \bullet To get fast action when friction changes one must use much integral action (small $T_i)$
- Gives phase lag, may cause stability problems etc

Mechanical Vibrator-Dither

Avoids sticking at v=0 where there usually is high friction by adding high-frequency mechanical vibration (dither)

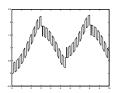


Cf., mechanical maze puzzle (labyrintspel)

Adaptive Friction Compensation

The Knocker

Combines Coulomb compensation and square wave dither



Tore Hägglund, Innovation Cup winner + patent 1997

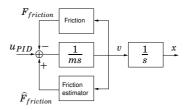
Result: $e = a - \hat{a} \rightarrow 0$ as $t \rightarrow \infty$,

since

$$\begin{split} \frac{de}{dt} &= -\frac{d\hat{a}}{dt} = -\frac{dz}{dt} + km\frac{d}{dt}|v| \\ &= -ku_{PID}\mathrm{sgn}(v) + kmv\mathrm{sgn}(v) \\ &= -k\mathrm{sgn}(v)(u_{PID} - m\hat{v}) \\ &= -k\mathrm{sgn}(v)(F - \hat{F}) \\ &= -k(a - \hat{a}) \\ &= -ke \end{split}$$

Remark: Careful with $\frac{d}{dt}|v|$ at v=0.

Coulomb Friction $F = a \operatorname{sgn}(v)$



Assumption: v measurable. Friction estimator:

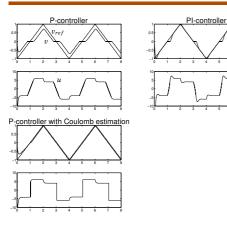
$$\begin{array}{rcl} \dot{z} & = & ku_{PID} \operatorname{sgn} v \\ & \widehat{a} & = & z - km|v| \\ & \widehat{F}_{friction} & = & \widehat{a} \operatorname{sgn} v \end{array}$$

Example-Friction Compensation

Velocity control with

- a) P-controller
- b) PI-controller
- c) P + Coulomb estimation

Results



Next Lecture

- ► Backlash
- Quantization