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Nonlinear Control and Servo systems

Lecture 1

Anders Robertsson, 2010

Dept. of Automatic Control
LTH, Lund University

Overview Lecture 1

• Practical information
• Course contents
• Nonlinear control phenomena
• Nonlinear differential equations

Course Goal

To provide students with a solid theoretical foundation of

nonlinear control systems combined with a good engineering

ability

You should after the course be able to

◮ recognize common nonlinear control problems,
◮ use some powerful analysis methods, and
◮ use some practical design methods.

Today’s Goal

◮ Recognize some common nonlinear phenomena

◮ Transform differential equations to autonomous form,

first-order form, and feedback form.

◮ Describe saturation, dead-zone, relay with hysteresis,

backlash

◮ Calculate equilibrium points

Course Material

◮ Textbook
◮ Glad and Ljung, Reglerteori, flervariabla och olinjära

metoder, 2003, Studentlitteratur,ISBN 9-14-403003-7 or the
English translation Control Theory, 2000, Taylor & Francis
Ltd, ISBN 0-74-840878-9. The course covers Chapters
11-16,18. (MPC and optimal control not covered in the
other alternative textbooks.)

◮ ALTERNATIVE: H. Khalil, Nonlinear Systems (3rd ed.), 2002,
Prentice Hall, ISBN 0-13-122740-8. A good, but a bit more
advanced book.

◮ ALTERNATIVE (Hard to get/out of print): Slotine and
Li, Applied Nonlinear Control, Prentice Hall, 1991. The
course covers chapters 1-3 and 5, and sections 4.7-4.8,
6.2, 7.1-7.3.

Course Material, cont.

◮ Handouts (Lecture notes + extra material)

◮ Exercises (can be download from the course home page)

◮ Lab PMs 1, 2 and 3

◮ Home page
http://www.control.lth.se/course/FRTN05/

◮ Matlab/Simulink other simulation software
see home page

Lectures and labs

The lectures (30 hours) are given as follows:

Mon 10-12, M:D Mar 15, Mar 22, Apr 19 – May 17
Wed 10-12, M:B, March 17, Mar 24, Apr 21 – May 19
Thu 10-12 M:D April 15

The lectures are given in English.

———————

The three laboratory experiments are mandatory.

Sign-up lists are posted on the web at least one week before
the first laboratory experiment. The lists close one day before

the first session.

The Laboratory PMs are available at the course homepage.

Before the lab sessions some home assignments have to be
done. No reports after the labs.

Exercise sessions and TAs

The exercises (28 hours) are taught in two alternative groups;

group 1 Tue 13-15 Wed 13-15
group 2 Tue 15–17 Thu 15–17

NOTE: The exercises are held in either ordinary lecture rooms or the
department laboratory on the bottom floor in the south end of the
Mechanical Engineering building, see schedule on home page.

Karl Berntorp Daria Madjidian
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The Course

◮ 15 lectures
◮ 14 exercises
◮ 3 lab exercises.
◮ 5 hour exam: May 28, 2010.

◮ Open-book exam: lecture notes but no old exams or
exercises allowed. Next exam on August 20, 2010

Contents

◮ Introduction. Typical nonlinear problems and phenomena.
◮ Linearization. Simulation.
◮ Stability theory
◮ Periodic solutions.
◮ Compensation for friction, saturation, back-lash etc.
◮ Optimal control
◮ Nonlinear control design methods

Todays lecture

Common nonlinear phenomena

◮ Input-dependent stability
◮ Stable periodic solutions
◮ Jump resonances and subresonances
◮ Peaking

Nonlinear model structures

◮ Common nonlinear components
◮ State equations
◮ Feedback representation

Linear Systems

S
u y = S(u)

Definitions: The system S is linear if

S(αu) = α S(u), scaling

S(u1 + u2) = S(u1) + S(u2), superposition

A system is time-invariant if delaying the input results in a
delayed output:

y(t− τ ) = S(u(t− τ ))

Linear time-invariant systems are easy to analyze

Different representations of same system/behavior

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) = 0

y(t) = �(t) ⋆ u(t) =
∫

�(r)u(t− r)dr

Y(s) = G(s)U(s)

Local stability = global stability:

Eigenvalues of A (= poles of G(s)) in left half plane

Superposition:

Enough to know step (or impulse) response

Frequency analysis possible:

Sinusoidal inputs give sinusoidal outputs

Linear Models are not always Enough

Example: Ball and beam

x

m�

m� sin(φ)

φ

Linear model (acceleration along beam) :
Combine F = m ⋅ a = md2x

dt2
and F = m� sin(φ):

ẍ(t) = 5�
7

φ(t)

Linear Models are not Enough

x = position (meter)

φ = angle (radians)

� = 9.81 (meter/sec2)

Can the ball move 0.1 meter in 0.1 seconds?

Simple approximations give

x(t) ( 50

7

t2

2
φ0 ( 0.04φ0

φ0 ( 0.1

0.04
= 2.5 radians

Clearly outside linear region!

Contact problem, friction, centripetal force, saturation

How fast can it be done? (Optimal control)
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2 minute exercise: Find a simple system ẋ = f (x,u) that is

stable for a small input step but unstable for large input steps.

Stability Can Depend on Amplitude

?+ 1
s

1
(s+1)2

Motor Valve Process

−1

r y

Valve characteristic f (x) =???
Step changes of amplitude, r = 0.2, r = 1.68, and r = 1.72

Step Responses
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Stability depends on amplitude!

Simple compensation

How would you go about the previous problem if there is an
“input nonlinearity”? Are there still any problems?

2

Out2

1

Out1

(s−1)

s(s+1)

system_2

(s−1)

s(s+1)

system_1

u^2

Fcn_2

u^3

Fcn

2

In2

1

In1

What system is (was!) this?

Unstable process

Bounded domain of stability

Rate limitations

see time plots

Stable Periodic Solutions

Example: Motor with back-lash

y

Sum

5

P−controller

1

5s  +s2

Motor

0

Constant

Backlash

−1

Motor: G(s) = 1
s(1+5s)

Controller: K = 5

Stable Periodic Solutions

Output for different initial conditions:
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Frequency and amplitude independent of initial conditions!

Several systems use the existence of such a phenomenon
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Relay Feedback Example

Period and amplitude of limit cycle are used for autotuning

Σ Process

PID

Relay

A

T

u y

  − 1

0 5 10
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0

1

Time

u
y

[ patent: T Hägglund and K J Åström]

The peaking phenomenon

Example: Controlled linear system with right-half plane zero

Feedback can change location of poles but not location of zero
(unstable pole-zero cancellation not allowed).

Gcl(s) =
(−s+ 1)ω 2o
s2 + 2ω os+ω 2o

(1)

A step response will reveal a transient which grows in amplitude
for faster closed loop poles s = −ω o, see Figure on next slide.

The peaking phenomenon – cont.
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Step responses for the system in Eq. (1), ω o = 1, 2, and 5.
Faster poles gives shorter settling times, but the transients

grow significantly in amplitude, so called peaking.

The peaking phenomenon – cont.

Note!

◮ Linear case: Performance may be severely deteriorated by
peaking, but stability still guaranteed.

◮ Nonlinear case: Instability and even finite escape time
solutions may occur.

What bandwidth constraints does a non-minimum zero impose
for linear systems? See e.g., [?, ?, ?]

Jump Resonances

y

Sum
Sine Wave

Saturation

20

5s  +s2

Motor

−1

Response for sinusoidal depends on initial condition

Problem when doing frequency response measurement

Jump Resonances

u = 0.5 sin(1.3t), saturation level =1.0

Two different initial conditions
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give two different amplifications for same sinusoid!

Jump Resonances

Measured frequency response (many-valued)
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New Frequencies

Example: Sinusoidal input, saturation level 1

a sin t y
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New Frequencies

Example: Electrical power distribution

THD = Total Harmonic Distortion =
P∞
k=2 energy in tone k
energy in tone 1

Nonlinear loads: Rectifiers, switched electronics, transformers

Important, increasing problem

Guarantee electrical quality

Standards, such as THD < 5%

New Frequencies

Example: Mobile telephone

Effective amplifiers work in nonlinear region

Introduces spectrum leakage

Channels close to each other

Trade-off between effectivity and linearity

Subresonances

Example: Duffing’s equation ÿ+ ẏ+ y− y3 = a sin(ω t)
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When is Nonlinear Theory Needed?

◮ Hard to know when - Try simple things first!
◮ Regulator problem versus servo problem
◮ Change of working conditions (production on demand,

short batches, many startups)
◮ Mode switches
◮ Nonlinear components

How to detect? Make step responses, Bode plots

◮ Step up/step down
◮ Vary amplitude
◮ Sweep frequency up/frequency down

Some Nonlinearities

Static – dynamic

Sign

Saturation

Relay

e
u

Math
Function

Look−Up
Table

Dead Zone

Coulomb &
Viscous Friction

Backlash

|u|

Abs

2 minute exercise

Construct a model for a “rate limiter” using some of the previous

nonlinear blocks.

Nonlinear Differential Equations

Problems

◮ No analytic solutions
◮ Existence?
◮ Uniqueness?
◮ etc

Existence Problems

Example: The differential equation

dx

dt
= x2, x(0) = x0

has solution

x(t) = x0

1− x0t
, 0 ≤ t < 1

x0

Finite escape time

t f =
1

x0
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Finite Escape Time
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2

Uniqueness Problems

Example: The equation ẋ = √x, x(0) = 0 has many solutions:

x(t) =
{

(t− C)2/4 t > C
0 t ≤ C
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Compare with water tank:

dh/dt = −a
√
h, h : height (water level)

Change to backward-time: “If I see it empty, when was it full?”)

Existence and Uniqueness

Theorem

Let ΩR denote the ball

ΩR = {z; qz− aq ≤ R}

If f is Lipschitz-continuous:

q f (z) − f (y)q ≤ Kqz− yq, for all z, y∈ Ω

then ẋ(t) = f (x(t)), x(0) = a has a unique solution in

0 ≤ t < R/CR,

where CR = maxΩR q f (x)q

State-Space Models

◮ State vector x
◮ Input vector u
◮ Output vector y

general: f (x,u, y, ẋ, u̇, ẏ, . . .) = 0
explicit: ẋ = f (x,u), y = h(x)

affine in u: ẋ = f (x) + �(x)u, y= h(x)
linear time-invariant: ẋ = Ax + Bu, y= Cx

Transformation to Autonomous System

Nonautonomous:
ẋ = f (x, t)

Always possible to transform to autonomous system

Introduce xn+1 = time

ẋ = f (x, xn+1)
ẋn+1 = 1

Transformation to First-Order System

Assume d
ky

dtk
highest derivative of y

Introduce x =
[

y
dy
dt
. . .

dk−1y
dtk−1

]T

Example: Pendulum

MR2θ̈ + kθ̇ +M�R sinθ = 0

x =
[

θ θ̇
]T

gives

ẋ1 = x2

ẋ2 = − k

MR2
x2 −

�
R
sin x1

A Standard Form for Analysis

Transform to the following form

G(s)

Nonlinearities

Example, Closed Loop with Friction

_

_

GC

Friction

vref u

F

v

Z[

−G
1+CG

Friction



7

Equilibria (=singular points)

Put all derivatives to zero!

General: f (x0,u0, y0, 0, 0, 0, . . .) = 0
Explicit: f (x0,u0) = 0
Linear: Ax0 + Bu0 = 0 (has analytical solution(s)!)

Multiple Equilibria

Example: Pendulum

MR2θ̈ + kθ̇ +M�R sinθ = 0

Equilibria given by θ̈ = θ̇ = 0 =[ sinθ = 0 =[ θ = nπ
Alternatively,

ẋ1 = x2

ẋ2 = − k

MR2
x2 −

�
R
sin x1

gives x2 = 0, sin(x1) = 0, etc

Next Lecture

◮ Linearization
◮ Stability definitions
◮ Simulation in Matlab


