

Nonlinear Control and Servo Systems (FRTN05)

Exam - May 28, 2010 at 08.00-13.00

Points and grades

All answers must include a clear motivation. The total number of points is 25. The maximum number of points is specified for each subproblem. Most subproblems can be solved independently of each other. *Preliminary* grades:

- 3: 12 16.5 points
- 4: 17 21.5 points
- 5: 22 25 points

Accepted aid

All course material, except for the exercises and solutions to old exams, may be used as well as standard mathematical tables and authorized "Formelsamling i reglerteknik". Pocket calculator.

Results

The result of the exam will be posted on the notice-board at the Department. Contact the lecturer Anders Robertsson to see the corrected exam. The result will also be published on the course homepage http://www.control.lth.se/course/FRTN05/.

Note!

In many cases the sub-problems can be solved independently of each other.

Solutions to the exam in Nonlinear Control and Servo Systems (FRTN05) 2010-05-28

1. Consider the system

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = \sin x_1 - x_1 x_2 + u$

Let u = 0. Determine all equilibrium points of the system, and determine their phase plane characteristics. (3 p)

Solution

From the first state equation, we have $x_2 = 0$. Plugging this into the second state equation we have $\sin x_1 = 0 \Rightarrow x_1 = k\pi$, $k = \dots, -1, 0, 1, \dots$ The stationary points are:

$$(x_1^0, x_2^0) = (k\pi, 0), \quad k = \dots, -1, 0, 1, \dots$$

To check the phase plane characteristics we linearize the system.

$$A = \begin{pmatrix} 0 & 1 \\ \cos x_1^0 - x_2^0 & -x_1^0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \cos k\pi & -k\pi \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ (-1)^k & -k\pi \end{pmatrix}$$

The characteristic polynomial becomes

$$s^2 + k\pi s + (-1)^{k+1}$$

For k = 0 we have

$$s^2 - 1 = 0 \implies \text{saddle point}$$

For $k \neq 0$ the poles are located at:

$$s = -\frac{k\pi}{2} \pm \sqrt{\left(\frac{k\pi}{2}\right)^2 + (-1)^k}$$

Since

$$\left(\frac{k\pi}{2}\right)^2 + (-1)^k > 0 \quad \forall k \neq 0$$

the poles will always be real. Also

$$\left|\frac{k\pi}{2}\right| < \sqrt{\left(\frac{k\pi}{2}\right)^2 + (-1)^k} \quad \text{if } k \text{ even}$$
$$\left|\frac{k\pi}{2}\right| > \sqrt{\left(\frac{k\pi}{2}\right)^2 + (-1)^k} \quad \text{if } k \text{ uneven}$$

which shows that the poles will have different signs if k is uneven, which implies a saddle point, and the same sign if k is even, which implies a node. We conclude:

 $k = 0 \Rightarrow$ saddle point k > 0 and k uneven \Rightarrow stable node k < 0 and k uneven \Rightarrow unstable node $k \neq 0$ and k even \Rightarrow saddle point

The phase plane of the system is shown in Figure 1

Figur 1 Phase plane of the system in 4

2. Show that the system

$$\dot{x} = -x^3 + y^2$$
$$\dot{y} = -2xy - y$$

is globally asymptotically stable.

Solution

Use the function $V = ax^2 + by^2$, where a, b > 0 as a candidate function. The function fulfills the requirements V(0) = 0, V > 0, and $V \to \infty$, $|x| \to \infty$. Then we have that

$$\dot{V} = 2ax(-x^3 + y^2) + 2by(-2xy - y) =$$

= -2ax⁴ + (2a - 4b)xy² - 2by².

By choosing, for example, a = 2 and b = 1 one finds that $\dot{V} = -4x^4 - 2y^2 < 0$ when $(x, y) \neq 0$, which proves that the system is GAS.

(2 p)

3. Consider the following system

$$\dot{x}_1 = x_2$$
$$\dot{x}_2 = x_2 + x_1^2 + u$$

- **a.** Verify that the origin of the system is not globally asymptotically stable for u = 0. (1 p)
- **b.** Your goal is to design a sliding mode controller that makes the origin globally asymptotically stable. Which of the sliding sets, $\sigma_1(x) = 0$, or $\sigma_2(x) = 0$, guarantee(s) asymptotic convergence of the states to the origin. *Motivate your answer by analysis of the dynamics on the set* $\{x | \sigma(x) = 0\}$.

$$\sigma_1(x) = x_1 + x_2$$

$$\sigma_2(x) = x_1 - x_2$$
(1 p)

c. Design a control law that drives the states of the system to the sliding set you chose above. (2 p)

Solution

a. Linearization around the origin yields:

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} x$$

The linearized system has an eigenvalue in 1, which shows that the origin is unstable.

b. A sliding mode is an invariant set, i.e. $\dot{\sigma} = 0$. We have

$$0 = \dot{\sigma}_1 = \dot{x}_1 + \dot{x}_2 = x_2 + \dot{x}_2 \Rightarrow \dot{x}_2 = -x_2$$

which shows that $x_2(t) \to 0$, $t \to \infty$ along $\sigma_1(x) = 0$. Since $x_1(t) = -x_2(t)$ on the sliding set, also $x_1(t) \to 0$, $t \to \infty$. For $\sigma_2(x)$ we have:

$$0 = \dot{\sigma}_2 = \dot{x}_1 - \dot{x}_2 = x_2 - \dot{x}_2 \Rightarrow \dot{x}_2 = x_2$$

which means $x_2(t) \to \pm \infty$, along $\sigma_2(x) = 0$.

The answer is: $\sigma_1(x) = 0$ guarantees asymptotic convergence to the origin.

c. Let

$$V(\sigma) = rac{\sigma^2}{2}$$

We have that:

$$\dot{V} = \frac{dV}{d\sigma}\frac{d\sigma}{dx}\frac{dx}{dt} = \sigma(\dot{x}_1 + \dot{x}_2) = \sigma(2x_2 + x_1^2 + u)$$

By choosing

$$u = -2x_2 - x_1^2 - k\sigma = -(2+k)x_2 - x_1(x_1+k)$$

with k > 0 we have

$$\dot{V} = -k\sigma^2$$

which means that $\sigma \to 0$ as $t \to \infty$ Another choice is

$$u = -2x_2 - x_1^2 - \operatorname{sign}(\sigma)$$

4. Consider two systems, S_1 and S_2 , where S_2 has an input nonlinearity Ψ :

$$S_1: egin{array}{lll} \dot{x}_1 = -x_1 + k u_1 \ y_1 = x_1 \ S_2: egin{array}{lll} \dot{z}_1 = z_2 \ \dot{z}_2 = -z_1 - z_2 - \Psi(u_2) \ y_2 = z_1 \end{array}$$

The systems are connected according to

$$u_1 = y_2$$
$$u_2 = y_1$$

a. The interconnected system can be described by the system in Figure 2. Compute the transfer function G. (2 p)

Figur 2 Figure for Problem 4

b. The Nyquist plot of G in Figure 2 is displayed in Figure 3, for k = 1. The nonlinearity Ψ is shown in Figure 4. For what values of k does the describing function analysis predict a limit cycle. Will the limit cycle be stable? Note: You do not have to compute the describing function for Ψ explicitly. (3 p)

Solution

The systems are interconnected as shown in Figure 5, where G_1 and G_2 are the transfer functions of S_1 and S_2 , respectively. G_1 is given by:

$$G_1 = \frac{k}{s+1}$$

Figur 3 The Nyquist plot of G in Problem 4, with k = 1

Figur 4 The nonlinearity in Problem 4

To obtain G_2 let $v = \Psi(u)$. G_2 can then be obtained by transforming S_2 into state space form and computing the transfer function through:

$$G_2(s) = C(sI - A)^{-1}B$$

Another (much simpler) way is to use, $\dot{z}_2 = \ddot{z}_1 = \ddot{y}_2$, in the second state equation to obtain:

$$\ddot{y}_2 + \dot{y}_2 + y_2 = v$$

Taking the Laplace transforms of both sides results in:

$$G_2(s) = \frac{1}{s^2 + s + 1}$$

G is then given by:

$$G(s) = G_1(s)G_2(s) = \frac{k}{(s+1)(s^2+s+1)}$$

6

Figur 5 Figure for Problem 4

Since Ψ is odd, its describing function is given by:

$$N(A) = \frac{2}{\pi A} \int_0^{\pi} \Psi(A\sin\phi)\sin\phi d\phi$$

Understanding of describing functions is enough, we do not have to compute N(A). We only need to derive upper and lower bounds, and show that these bounds are tight.

Upper bound: We know that if A < 1, $\Psi(A \sin \phi) = A \sin \phi$, $\forall \phi$, which means that Ψ functions as unit gain. This means that

$$N(A) = 1, \quad \text{if } A \le 1$$

Now take $A_1 > 1$. Then we have $\Psi(A_1 \sin \phi) < A_1 \sin \phi$ for some $\phi \in [0,\pi]$, which means that

$$N(A_1) = rac{2}{\pi A_1} \int_0^\pi \Psi(A_1 \sin \phi) \sin \phi d\phi < rac{2}{\pi A_1} \int_0^\pi A_1 \sin^2 \phi d\phi < 1$$

We can thus conclude that $N(A) \leq 1$ is an upper bound, that is achieved.

Lower bound Since the expression under the integral is nonnegative for all $\phi \in [0, \pi]$, and positive for all $\phi \in (0, \pi)$, we have the lower bound

$$N(A) > 0, \quad \forall A \ge 0$$

Since the maximum value of Ψ is 2 we have

$$N(A) = \frac{2}{\pi A} \int_0^{\pi} \underbrace{\Psi(A \sin \phi)}_{\leq 2} \underbrace{\sin \phi}_{\leq 1} d\phi \leq \frac{4}{A} \to 0, \quad A \to \infty$$

and conclude that the lower bound is approached asymptotically.

Therefore

$$N(A) \in (0,1] \quad \Rightarrow \quad -\frac{1}{N(A)} \in (-\infty,-1)$$

Describing function analysis predicts a limit cycle if

$$G(j\omega) = -\frac{1}{N(A)}$$

which requires $G(j\omega) = \Re\{G(j\omega)\} \leq -1$ for some ω . From the Nyquist diagram we see that this is achieved by choosing $k > \frac{1}{0.3} \approx 3.3$.

Note that this illustrates the interpretation of N(A) as the "equivalent gain" of Ψ .

Since $\frac{1}{N(A)}$ grows as we move to the left, if we choose a smaller A it will be encircled and will grow to the value where the lmit cycle occurs. On the other hand if we choose a larger A, the amplitude will decrease to the value where the limit cycle occurs. Hence, the limit cycle is stable.

5. Consider the system

$$\dot{x}_1 = x_1^2 + x_2$$
$$\dot{x}_2 = x_2 + u$$

- **a.** Show that the system is on strict feedback form. (1 p)
- **b.** Design a controller using backstepping to globally stabilize the origin. (2 p)

Solution

a. Define $f_1(x_1) = x_1^2$, $g_1(x_1) = 1$, $f_2(x_1, x_2) = x_2$, $g_2(x_1, x_2) = 1$. Then the system can be written as

$$\dot{x}_1 = f_1(x_1) + g_1(x_1)x_2$$

 $\dot{x}_2 = f_2(x_1, x_2) + g_2(x_1, x_2)u$

which is on strict feedback form.

b. Start with the system $\dot{x}_1 = x_1^2 + \phi(x_1)$ which can be stabilized using $\phi(x_1) = -x_1^2 - x_1$, where $\phi(0) = 0$. The first Lyapunov function is $V_1 = \frac{1}{2}x_1^2$. Then define $z_2 = x_2 - \phi$ to transfer the system to

$$\dot{x}_1 = -x_1 + z_2$$

 $\dot{z}_2 = z_2 - x_1 - x_1^2 + (1 + 2x_1)(-x_1 + z_2) + u$

Take $V_2 = V_1 + \frac{1}{2}z_2^2$ as the second Lyapunov function and note that $V_2(0) = 0$. Then

$$\dot{V}_2 = x_1\dot{x}_1 + z_2\dot{z}_2 = x_1(-x_1+z_2) + z_2(z_2-2x_1-3x_1^2+2x_1z_2+u)$$

= $-x_1^2 + z_2(-x_1+2z_2-3x_1^2+2x_1z_2+u),$

which is made negative $\forall (x_1, z_2) \neq 0$ if $u = x_1 - 3z_2 + 3x_1^2 - 2x_1z_2$. Noting that V is radially unbounded, it is possible to conclude that the origin is globally asymptotically stable.

6. A mass is moving around an equilibrium governed by an external force, a linear spring and viscous friction. The motion is described by the equation

$$\ddot{z} + \phi(\dot{z}) + z = u(t)$$

Suppose that ϕ is Lipschitz and satisfies $0.1v^2 \le \phi(v)v \le v^2$ for all v.

- **a.** Prove that ϕ is strictly passive. (1 p)
- **b.** Show that the system can be written as a feedback interconnection between ϕ and a linear system. (1 p)
- **c.** Show that the linear system is passive, and conclude that the map from u to \dot{z} is passive. (2 p)

Hint: A transfer function G is passive if and only if it is positive real. A definition of positive real is given below:

Positive Real

A transfer function G is positive real if and only if the following 3 conditions hold:

- 1. The function has no poles in the right half-plane.
- 2. If the function has poles on the imaginary axis or at infinity, denoted $i\omega_p$, they are simple poles and $\lim_{s\to i\omega_p} (s-i\omega_p)G(s)$ is positive.
- 3. The real part of G is nonnegative along the real axis, that is,

$$\operatorname{Re}(G(i\omega)) \geq 0.$$

d. Verify BIBO stability from u to \dot{z} .

Solution

a. ϕ is obviously passive. Strict passivity follows through the definition of the nonlinearity and strict passivity in the slides with $\epsilon = 0.1/2$:

$$\int \phi v \, \mathrm{d}t \ge 0.1 \int v^2 \, \mathrm{d}t = \frac{0.1}{2} \int v^2 + v^2 \, \mathrm{d}t \ge \frac{0.1}{2} \int \phi^2 + v^2 \, \mathrm{d}t$$

b. With x = (z, z), the system can be written

$$\dot{x} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} x - \begin{bmatrix} 1 \\ 0 \end{bmatrix} (\phi([1 \ 0]x - u)) = Ax - B\phi(Cx) + Bu$$

where $G(i\omega) = C(i\omega I - A)^{-1}B = i\omega/(1 - \omega^2)$ is passive.

(1 p)

- **c.** *G* is passive, since it has no poles in Re[s] > 0, has simple poles at $\pm i$, and whose residues are $\frac{1}{2}$. Passivity of the map from *u* to \dot{z} is a direct consequence of the fact that a feedback interconnection of two passive systems is passive.
- **d.** *G* is passive and ϕ is strictly passive. Therefore, according to the passivity theorem, the system is BIBO stable.

Alternative solution: $G(i\omega) = C(i\omega I - A)^{-1}B = i\omega/(1 - \omega^2)$ is purely imaginary and therefore stays outside the circle through $-1/\alpha = -10$ and $-1/\beta = -1$. Hence, by the circle criterion, the system is BIBO stable.

7. A factory has wagons moving on rails transporting goods. A simplified model could then be a mass-damper system with mass M > 0 and damping d > 0, and an external force acting u on it. The equation of motion is then given by

$$M\ddot{x} = -d\dot{x} + u,$$

where x is the position of the wagon. In order to be able to transport as much goods as possible, we would like the wagon to go from rest to high velocity in a short, precalculated time t_f . However, in order to be environmental friendly we would like to spend as low amount of energy as possible. If we further simplify the problem by setting M = 1, d = 1, and $t_f = 1$, and let $y = [y_1 \ y_2]^T = [x \ \dot{x}]^T$, this optimal control problem can be formulated as

$$\min_u \int_0^1 u(t)^2 \,\mathrm{d}t$$

subject to $\dot{y} = Ay + Bu$, $y_1(0) = y_2(0) = 0$ and $y_2(1) = 1$

where

$$A = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Solve this optimal control problem for u.

Solution

We first consider the normal case, i.e., $n_0 = 1$. The Hamiltonian is given by

$$H(y, u, \lambda) = u^2 + \lambda^T (Ay + Bu), \qquad \lambda \in \mathbb{R}^2.$$

At optimality we have

$$\frac{\partial H(y, u, \lambda)}{\partial u} = 2u + \lambda^T B = 0 \iff u = -\frac{1}{2}\lambda^T B$$

The adjoint equations are given by

$$\dot{\lambda} = -rac{\partial H^T(y,u,\lambda)}{\partial y} = -A^T\lambda, \quad \lambda(t_f=1) = rac{\partial \Psi^T}{\partial y}(t_f=1,y(t_f=1))\mu = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\mu,$$

and therefore we get that

$$\dot{\lambda}_1 = 0, \quad \lambda_1(1) = 0 \Longrightarrow \lambda_1(t) = 0.$$

Then

$$\dot{\lambda}_2 = -\lambda_1 + \lambda_2, \quad \lambda_2(1) = \mu_2 \Longrightarrow \ \lambda_2(t) = \mu_2 e^{t-1}.$$

Thus

$$\lambda(t) = \begin{bmatrix} 0 \\ e^{t-1}\mu_2 \end{bmatrix}$$
, and $u = -\frac{1}{2}e^{t-1}\mu_2$.

(3 p)

It remains to find μ_2 , which can be done by solving for the velocity

$$\dot{y}_2 + y_2 = -\frac{1}{2}e^{t-1}\mu_2 \iff \frac{d}{dt}(e^t y_2) = -\frac{1}{2}e^{2t-1}\mu_2 \iff y_2 = -\frac{1}{4}e^{t-1}\mu_2 + Ce^{-t},$$

where *C* is a constant. Using the boundary condition, $y_2(0) = 0$ and $y_2(1) = 1$, we find that $\mu_2 = -\frac{4}{1-e^{-2}}$. Note that if $n_0 = 0$ *H* has no minimum value, hence there are no abnormal solutions.