
Department of

AUTOMATIC CONTROL

Nonlinear Control and Servo Systems (FRTN05)

Exam  August 26, 2008 at 27 pm

Points and grades

All answers must include a clear motivation. The total number of points is 25. The

maximum number of points is specified for each subproblem. Most subproblems

can be solved independently of each other. Preliminary grades:

3: 12− 16 points
4: 16.5− 20.5 points
5: 21− 25 points

Accepted aid

All course material, except for exercises and solutions to old exams, may be

used as well as standard mathematical tables and authorized “Formelsamling i

reglerteknik”. Pocket calculator.

Results

The exam results will be posted within two weeks after the day of the exam on

the notice-board at the Department. Contact the lecturer Anders Robertsson for

checking your corrected exam.

Note!

In many cases the sub-problems can be solved independently of each other.
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Solutions to the exam in Nonlinear Control and Servo Systems (FRTN05)
August 26, 2008.

1.

a. The symbol of the Olympic games in Fig. 1 reminds of a phase plane

plot. Can the "Olympic rings symbol" be generated by a second-order time-

invariant nonlinear system by picking 5 initial conditions, one for each ring,

and by simulating the system for each of these 5 initial conditions so that

the 5 rings appear (one ring for each simulation)? Motivate your answer.
(1 p)

x

y

Figure 1 Olympic rings in Problem 1(a).

b. Determine which of the systems (I-IV) which generated "the rings" in Fig. 2.
Also mark the direction of the solutions for two of the rings. Motivate your

answer. (1.5 p)
(I) ẋ = −si�n(y) (I I) ẋ = y

ẏ = −x ẏ= −x

(I I I) ẋ = cos(y) (IV ) ẋ = cos(x)
ẏ = sin(x) ẏ= −sin(y)

Solution

a. If the system is time-invariant (does not change with time) we can not have
trajectories crossing each others as the vector field in each point then is

uniquely determined.

b. System (III) corresponds to the phase plot. There are many ways to deter-
mine this and rule out the other sysems, including drawing the phase plots,

determining location and number of equilibrium points. The vector field is

shown Fig. 3
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Figure 2 Phase plane plot in Problem 1(b).

Figure 3 Phase plane plot with vector field in Problem 1(b). Note that there are many
other limit cycles than the 5 "Olympic rings".

2. Consider the feedback loop in Figure 4. The linear system

G(s) = 1

(s+ 1)4

is connected with the static nonlinearity u(t) = f (e(t)), where f (⋅) has the
describing function

N(A) = A+ 3A2.
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G(s)f (e)

-1

yur e

+

Figure 4 Block diagram for Problem 2.

What is the amplitude and frequency of a possible limit cycle? Will it be a

stable limit cycle? (2 p)

Solution

Possible crossing points between G(iω ) and 1/N(A)must be on the negative
real axis. Thus we need the frequency ω ′ where

argG(iω ′) = −π .

Now argG(iω ) = −4arctanω which leads to the solution ω ′ = 1. Also
pG(iω ′)p = 1/4. This gives us the equation

1/N(A′) = 1/4

with the solution A′ = 1 (and A′ = −4/3).
The limit cycle will be unstable, as G(s) has stable poles and for increased
amplitude A>A’ the Nyquist curve for G(s) will encircle the point -1/N(A)
( i.e. pG( jω {−180 deg})p ⋅ pN(A)p > 1).

3. Consider the second order system

ẍ +α ẋ− x + x3 = 0 (1)

where α is a constant parameter.

a. Rewrite the system in state-space form. (0.5 p)

b. Determine all equilibrium points for the system and determine their local

stability properties for positive values of the parameter α . (2.5 p)

c. Consider the case α = 0. Determine the time-derivative of the function

H = −1
2
x2 + 1

4
x4 + 1

2
(ẋ)2

along the solutions of the system and comment on the properties of the

system when α = 0.

( Note: You can choose to do this problem exercise either from the original
system formulation in Eq. (1) or from your answer in (a).) (2 p)

Solution
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a. Introduce two states x1 = x and x2 = ẋ.

ẋ1 = x2
ẋ2 = +x1 − x31 −α x2

b. The equilibrium points are given by (ẋ1, ẋ2) = (0, 0): ẋ1 = 0 =[ x2 = 0
and ẋ2 = 0 =[ +x1 − x31 − α ⋅ 0 = 0 =[ x1 = {0,±1}, which gives us
the three equilibria (xo1, xo2) = {(0, 0), (1, 0), (−1, 0)} The jacobian � f�x =[

0 1

(1− 3x21) −α

]

x=(xo
1
, xo
2
)
=

{[
0 1

1 −α

]

,

[
0 1

−2 −α

]

,

[
0 1

−2 −α

]}

Equilibrium (0, 0): From solving the corresponding characteristic equation
one gets the system poles to be −α

2
±

√

α 2/4+ 1 (i.e., one stable and one
unstable pole); The linearization has a thus saddle point and then also the
nonlinear system has a saddle point in (0,0)).
Equilibria (0, ±1): At (0, ±1) one gets the system poles for the linearized
system to be −α

2
±

√

α 2/4− 2 which are in the left half-plane for α > 0 For
α > 2 the poles will be real (stable nodes) and for 0 < α < 2 the poles will
be complex conjugated (stable foci).

c. Take the time-derivative of H and insert the system dynamics (for either ẍ
of for ẋ1 and ẋ2 respectively, depending on if you use the original formulation

or consider your solution in subproblem (a)):
dH
dt
= dH
dx
dx
dt
+ dH
dẋ
dẋ
dt
= −xẋ+x3 ẋ+ ẋ ⋅ ẍ

︸︷︷︸

Eq. 1

= 0. This means that the value of H

is preserved constant along the system trajectories (This system property
is representative for Hamiltonian systems).
(For this system we have that H(x1 = 0, x2 = 0) = 0, so for all points H ,= 0
there is no system trajectory going to the origin.)
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static fcn.

g(.)

Transfer Fcn
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Static fcn

f(u)=u^3

Integrator
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5
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Figure 5 Block diagram for Problem 4.

4.

a. Introduce states and write the closed-loop system in Fig. 5 in a state-space

form (for a general static function �). (1 p)

b. Use Lyapunov-based design to find a function �(⋅) which globally stabilizes
the origin. Hint: You may try with a quadratic Lyapunov fcn candidate.

(2 p)

Solution

a. Introduce the state x1 at the output of the integrator and state x2 at the

output of the system
1

s+ 1. This gives

ẋ1 = −x31 + 5x2
ẋ2 = �(x1) − x2

b. Consider the Lyapunov function candidate V = 1
2
x21 + 1

2
x22 where

• V (x1, x2) > 0 if (x1, x2) ,= (0, 0)
• V (0, 0) = 0
• V is radially unbounded

dV
dt
= x1 ẋ1+x2 ẋ2 = −x41+5x1x2+x2�(x1)−x22. If we e.g., choose �(x1) = −5x1

then V̇ < 0, for all x ,= 0 and the origin is a globally asymptotically stable
equilibrium.

5. Consider the system in Figure 6, where ∆ denotes some unknown nonlinear

system (this is often called “multiplicative uncertainty”). The system with
∆ = 0 is stable. Some relevant amplitude curves are shown in Figure 7.
Use the figures to find a bound γ so that the system is stable for all ∆ with

q∆q < γ . (3 p)
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G(s)C(s) ++
−

∆

Figure 6 The system in Problem 5
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Amplitude of (1+ GC)−1 Amplitude of (1+ GC)−1GC

Amplitude of C(1+ GC)−1 Amplitude of (1+ GC)−1G

Figure 7 Amplitude curves for (1+GC)−1, (1+GC)−1GC, C(1+GC)−1 and (1+GC)−1G
in Problem 5. The y-axes are graded in 20 log10(⋅).

Solution

The diagram can be rewritten as as a feedback diagram with (1+GC)−1GC
in the lower box and ∆ in the upper. The small gain theorem says that the
loop is stable if

q∆q ⋅ q(1+ GC)−1GCq < 1
From the diagram we read q(1+GC)−1GCq = −3dB hence we have stability
if q∆q < 3dB. Hence γ = 3dB = 1.4.

6. Consider the system

ẋ1 = −x21 + x2 − sign(x1 + x2)
ẋ2 = x1 − x2

Determine which part of the switching line which belongs to the sliding

surface. Also determine the dynamics on the sliding surface and its stability

properties. (3 p)

Solution
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The dynamics are

ẋ1 = −x21 + x2 − sign(x1 + x2)
ẋ2 = x1 − x2

We have thus the switch-line at x1+ x2 = 0 and will first determine on what
subset of the line there may be sliding (i.e. where the vector fields on either
side of the switching line points towards it). Set σ (x) = x1+ x2 and use e.g.,
equivalent control to calculate the sliding surface. Use ueq ∈ [−1 1]

ẋ1 = −x21 + x2 + ueq
ẋ2 = x1 − x2

Set σ̇ (x) = 0

σ̇ (x) = ẋ1 + ẋ2 = −x21 + x2 + ueq+ x1 − x2 = 0 (2)

Thus ueq = x1(x1−1). Since ueq ∈ [−1 1] the sliding surface is in the region
where x1 satisfies f (x1) = x1(x1−1) ∈ [−1 1]. f (x1) is convex and the min-
imum of f (x1) is at x1 = 1/2 where f (1/2) = −1/4. Thus the lower bound
is never reached and the region is between the roots of x21 − x1− 1 = 0. The
solution to this is x1 = 1/2±

√

1/4 + 1 = (1±
√
5)/2, see also Fig. 8.

Look at the decoupled dynamics on the sliding surface where σ̇ (x) = ẋ1 +
ẋ2 = ẋ1 + x1 − x2 = 0. Using that x1 = −x2 on the line we get

ẋ1 = −2x1
ẋ2 = −2x2

(3)
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Figure 8 Condition to stay on switching line: ueq = x1(x1 − 1) ∈ [−1, 1].

Warning! If you don’t substitute x1 = −x2 to get decoupled equations in
the system above (note: only valid on on the sliding surface!!) it is easy to
draw wrong conclusions! You may e.g., then get the system

ẋ1 = 2x2
ẋ2 = 2x1

(4)
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which has one stable and one unstable eigenvalue; λ = ±2 which may
seem like a contradiction. However, the eigenvector corresponding to the

stable eigenvalue is exactly along the sliding region of switching line (the
only region where the “reduced dynamics” are valid), so if you start in the
sliding region you will move towards the origin.
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7. Consider the system

ẋ1 = x2
ẋ2 = −x1 + (1− x21 − x22)x2

a. Find the only equilibrium point and show that the unit circle is a limit cycle

for the system. (1 p)

b. Consider a Lyapunov function candidate

V (x1, x2) =
1

2
(1− x21 − x22)2

and use La Salle’s principle to show that almost all trajectories converge to

the limit cycle. (2.5 p)

Solution

a. Equilibrium: ẋ1 = ẋ2 = 0 =[ (x1, x2) = (0, 0) The unit circle is described
by x21 + x22 − 1 = 0.
Alt 1: Check first if the unit circle is invariant: Look at the time derivative of

x21+x22−1:
d(x21 + x22 − 1)

dt
= x1 ẋ1+x2 ẋ2 = x1x2+x2(−x1+(1−x21−x22)x2) = 0

on the set. The motion on this set is then described by

ẋ1 = x2
ẋ2 = −x1 + (1− x21 − x22)

︸ ︷︷ ︸

=0

x2 = −x1

reduces to a linear system with poles on the imaginary axis. The periodic

solution describes exactly the unit cycle.

Alt 2. Make a change to polar coordinates (x, y) = (r cosθ , r sinθ ) and verify
that r = 1 gives a solution.

b. V̇ = (1− x21 − x22)(−x1 ẋ1 − x2 ẋ2) = (1− x21 − x22)(−x1x2 + x2x1 − x2(1− x21 −
x22)x2) = −(1 − x21 − x22)2x22 ≤ 0 This means that V = 0 on the unit circle
x21+ x22 = 1 or when x2 = 0. However, ẋ2 = x1−0, so if we do not start in the
origin (0, 0), ẋ2 will be ,= 0. From La Salle’s theorem the larges invariant
set is {(x1, x2)p(0, 0) ∪ x21 + x22 = 1}.

8. Solve the optimal control problem

min
u
x2(T) +

∫ T

0

u2(t) dt

d

dt
x(t) = t u(t)

x(0) = 1.

The final time T is fixed. (3 p)
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Solution

The system is normal so can put n0 = 1. The Hamiltonian is

H = u2 + λ tu

Minimization wrt u gives u = −λ(t)t/2. The adjoint equation is

λ̇ = −Hx = 0, λ(T) = 2x(T).

This gives u = −tx(T). If this is put into the system equation we get

x(T) − x(0) =
∫ T

0

−t2x(T) dt = −T3/3x(T)

and hence x(T) = x(0)/(1 + T3/3). The optimal control signal is hence

u = − t

1+ T3/3 x(T).
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