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Consider the system
1

G(s) = 15 sT

. Sample the system using zero-order hold and the sampling interval A.
(0.5 p)

. Discretize the system using backward differences and the sampling interval
h. (0.5 p)

. Explain when zero-order hold sampling should be used and when discretiza-
tion using e.g. backward differences should be used. (1p)

A model of a ball rolling on a beam is given by

= (i o) o () w0

y(t) = (o 1] x(?)

The input time delay models the total delay induced by the implementation
(computational delay, network delay, etc.).

Sample the system assuming zero-order hold inputs and the sampling in-
terval h = 0.1. (2 p)

In Fig. 1 and Fig. 2 two schedules are shown for the same periodic task
set, but for different scheduling policies. An up-arrow indicates the arrival
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Figure 1 Execution schedule.

time for a new instance (job) of a task and an down-arrow indicates that
the execution associated with an instance is completed. For all of the tasks
it holds that D; = T;.

. Calculate the CPU utilization for the task set. (1p)

. Determine which scheduling policies that are used in the two cases. Moti-
vate your answers (1p)

. Verify the schedulability or non-schedulability of the task set under the two
scheduling policies using quantitative calculations. (2 p)
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Figure 2 Execution schedule.

The following continuous-time state-space system is given:

(o o)x+ (1)

y=(0 1)«
. Design a discrete-time deadbeat state-feedback controller u = —Lx for the
Z0OH-sampled discrete-time system, assuming that the sampling time ~ = 1.

(2p)

. If the B-matrix instead would be

-(3)

would it still be possible to design a deadbeat controller? If Yes, perform
the calculations. If No, explain why this is not possible. (1p)

. Give at least one reason for why it might be a bad idea to use a deadbeat
controller. (1p)

A discrete time filter is to be implemented on a microcontroller platform
that does not support floating point arithmetic. The filter has the discrete
time transfer function

0.405z + 0.3529

H(z) = 1
(2) = 5 1919.% + 1.5832 — 0.6703 (1)

The microcontroller supports 8-bit and 16-bit signed integers. We choose
to use the 8-bit size for declared variables and 16-bits for intermediate
results. For simplicity, we want to use the same number of fractional bits
everywhere.

. Determine the maximum number of fractional bits possible for coefficients
on the described platform and calculate values of the coefficients for this
number of fractional bits. (2 p)
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Figure 3 2-DOF controller structure.

b. Assume that the transfer function is written as

b1z + by

H(z) =
(2) 23+ a9z + a1z + ay

(2)

Provide a C implementation of the filter function int filter(int u) so
that it realizes the filter described above. It is OK if you realize the trans-
fer function on direct form, even if this, normally, is not recommended for
numerical reasons.

The input signal u uses Q6.0 encoding and the output from the filter should
do the same. A skeleton implementation is provided below.

int8_t filter(int8_t u) {
static int8_t b1l = ..., b0 = ..., .
static int8_t yoldl = 0, yold2 = 0, yold3 = 0;
static int8_t uoldl 0 uold2 = 0, uold3 = 0;
intl6_t yl16;
int8_t y;

/* Calculate the output */
/* Perform suitable limitation of the return value */

return y;

(2p)

Consider the following PID controller:

U(s) = K(BY,ef(5) — Y(5) + S E(s) + 5T (r¥res(6) = ¥(s))  (3)

a. Write the controller on 2-degree of freedom (2-DOF) form, i.e., so that it
contains on feedback part (FB(s)) and one feedforward part (FF(s)) ac-
cording to the figure below: (1p)

b. Assume the following parameter values, K = 1,77 = 5,Tp = 0.2. Where
are the poles and zeros of FB(s) located? (Hint: View FB(s) as a single
transfer function.) (1p)
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Figure 4 The layered control architecture

c. Approximate FB(s) with a Tustin approximation with 2 = 0.1. Where are
the poles of the discrete-time version of FB(s) located? (1p)

A control system implemented in Java uses a three-layered approach to di-
vide its functionality (see Figure 4). The lowest layer performs I/O with
the physical control plant and is executed as a number of high priority
threads. The middle layer implements reference generation and control al-
gorithms and is run with mid priority. The highest layer is the GUI and is
run at the lowest priority. Data is accessed through a globally referenced
data structure.

a. The desired interface for the central data structures can be seen below.
Provide an implementation so that the operations putData() and getData()
are properly synchronized and so that the GUI can wait for new data to be
available through waitForData () without polling. The implementation must
also make sure that no there are no external references to the privately held
data object.

public class DataStore {
private Cloneable data; /* Private data */

/* Updates the data with a local copy,
notifies all threads that are waiting
for the updated message. */

public void putData(Cloneable newData) ;

/* Returns a private data object. */
public Object getData();

/* Blocks until the data is updated. */
public void waitForData()
throws InterruptedException;



i | T, [ms] | £; [H] | Ci [ms] |

1|10 100 1
2120 50 3
3120 50 6
4 | 40 25 2
5| 40 25 2
6 | 40 25 4
7 | 40 25 5

Table 1 Task period time T;, frequency f; and worst case execution time C; for the
avionics system tasks 7;,1 € {1,...,7}.

(2p)

b. The priority scheme used can result in unwanted behavior. Describe the
phenomenon, why it can occur and at least one method to resolve it. (1 p)

In avionics systems, static scheduling is a common solution to the real-
time problem. In this problem we consider an avionics subsystem with
seven tasks 7;, 1 € {1,...,7} executing at three harmonic frequencies, with
f1=100 [Hz] being the base frequency. The task characteristics are given in
Table 1.

a. As a first approach to solve the real-time problem the engineers used a static
schedule implemented as fixed procedure cycles as shown in Figure 5. The
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Figure 5 Static scheduling scheme based on procedure chains with tasks executing at
harmonic frequencies.

program traverses the loop at the rate of the base frequency. The selector
executes each of the 4 procedure chains once every 4th cycle in the loop.
As a result the procedures labeled Pfl executes at the frequency f1/4, P} at



the frequency f1/2, and P% at the frequency f;. Schedule the seven tasks
in Table 1, 7;,i € {1,...,7}, by uniquely assigning them the labels Pll,
Pé, i€ {1,2}, P}, j € {1,...,4} in Figure 5. (1p)

. Calculate the jitter for each of the tasks given in your previous task assign-
ments. Assume that the execution times given in Table 1 are worst case
execution times and that the best case execution times are 0.5 time units
shorter than the worst case values. Define jitter as the difference between
the worst case (latest) starting time (within the period) and the best case
(earliest) starting time of a task. (2 p)



