
Solutions to the exam in Real-Time Systems 130108

These solutions are available on WWW: http://www.control.lth.se/course/FRTN01/

1.

a. G1(z) has two poles in z = 1, which means that it should exhibit unstable
behavior. G3(z) and G4(z) only differs in the time constant, with G4(z)
faster than G3(z). G2(z) has a pole on the negative real axis. Further, its
response is on the form x(n) = −0.99x(n− 1) = 0.99 ∗ 0.99x(n− 2) = ⋅ ⋅ ⋅ =
(−0.99)nx(0). Therefore the matching is:

G1(z) → 4
G2(z) → 1
G3(z) → 3
G4(z) → 2

b. G2(z) is a first order process. Yet, it has an oscillatory response. Thus, it
cannot be the result of zero-order hold sampling a first-order continuous
system.

2.

a. The pulse-transfer function is given by

H(z) = C(zI − Φ)−1Γ

=
[

1 0
] [

z− 2 −1
0 z− 1

]−1 [
0

0.5

]

=
[

1 0
] 1
(z− 2)(z− 1)

[
z− 1 1

0 z− 2

][
0

0.5

]

= 0.5
(z− 2)(z− 1)

b. The system has a pole outside the unit circle in z = 2, so it is unstable.

c. The closed-loop system is given by

x(k+ 1) = (Φ − Γ L)x(k) + Γlrr(k)
y(k) = Cx(k)

with the pulse-transfer function

Hcl(z) = C(zI − Φ + Γ L)−1Γlr

=
[

1 0
] [

z− 2 −1
0.5l1 z− 1+ 0.5l2

]−1 [
0

0.5

]
lr

=
[

1 0
] 1
(z− 2)(z− 1+ 0.5l2) + 0.5l1

[
z− 1+ 0.5l2 1
−0.5l1 z− 2

][
0

0.5

]
lr

1

The characteristic polynomial (z− 2)(z− 1 + 0.5l2) + 0.5l1 = z2 + (0.5l2 −
3)z+ 2+ 0.5l1 − l2 should be equal to z2 for deadbeat control, which gives

L =
[

8 6
]

The static gain is Hcl(1) = 0.5lr, which gives lr = 2.

3. Pulse Width Modulation. Used, e.g., in micro-controllers that have digital
outouts but no analog outputs. The analog value that should be output is
encoded through the duty cycle of of a square wave signal. For example, a
square wave signal that is high for 10% of the time and low for 90% of the
time will have a duty cycle of 10%. If this signal is sent through an analog
low-pass filter the output of the filter will approximate the desired analog
output, i.e, the average value of the square wave signal.

4.

a. Sampling the process using the table “Zero-order hold sampling of a continuous-
time system with transfer function G(s)” gives

H(z) = 0.6321
z− 0.3679

The closed-loop system is given by

Hcl(z) = K H(z)
1+ K H(z) =

1.264
z+ 0.8964

The pole is located in −0.8964, inside the unit circle, so the closed-loop
system is stable.

b. The sampled process, including a one sample delay, is now given by

H(z) = 0.6321
z(z− 0.3679)

The closed-loop system is given by

Hcl(z) = 1.264
z2 − 0.3679z+ 1.264

The poles are located in 0.1836±1.1092i, i.e., outside the unit circle, so the
closed-loop system in unstable.

5.

a. In fixed-point representation, a coefficient k should be stored as an integer
K = round(k ⋅ 2N), where the integer N is the number of fractional bits.
8-bit ints can store values in the range [−128,+127], and the largest magni-
tude of any coefficient is 2.278. This means that no more than log2(128/2.78) =
5.81 fractional bits may be used. N = 5 gives the best resolution and should
hence be used.
The controller coefficients become

A = round(0.1466 ⋅ 25) = 5 B = round(1.050 ⋅ 25) = 34
C = round(1.517 ⋅ 25) = 49 D = round(−2.278 ⋅ 25) = −73

2

b. The pole is located in A/25 = 0.1562, i.e., a 6% error in pole location.

c. #define A 5
#define B 34
#define C 49
#define D -73
#define N 5

uint_8 y, x, u;
uint_16 x16 = 0, u16 = 0;

...

y = readInput();

/* calculate output */
u16 = (u16 + (int16_t)D*(int16_t)y)>>N; /* add D*y */
/* check for saturation */
if (u16 > 127) {

u = 127;
} else if (u16 < -128) {

u = -128;
} else {

u = u16;
}
writeOutput(u);

/* update state */
x16 = ((int16_t)A*(int16_t)x + (int16_t)B*(int16_t)y)>>N;
/* check for saturation */
if (x16 > 127) {

x = 127;
} else if (x16 < -128) {

x = -128;
} else {

x = x16;
}
u16 = (int16_t)C*(int16_t)x;

6.

a. Replacing dx1(t)/dt with a backward difference approximation gives

x1[k] = x1[k− 1] + hx2[k]
Replacing dx2(t)/dt with a backward difference approximation gives

x2[k] = x2[k− 1] − 1.4h
Tf

x2[k] − h
T2

f
x1[k] + h

T2
f

y[k]

Replacing x1[k] with the first expression gives

x2[k] = x2[k− 1] − 1.4h
Tf

x2[k] − h
T2

f
x1[k− 1] − h2

T2
f

x2[k] + h
T2

f
y[k]

3

Rearranging the terms leads to

(1+ 1.4h
Tf

+ h2

T2
f
)x2[k] = x2[k− 1] − h

T2
f

x1[k− 1] + h
T2

f
y[k]

or
x2[k] = 1

(T2
f + 1.4hTf + h2)(T

2
f x2[k− 1] − hx1[k− 1] + hy[k]) (1)

Inserting this into the equation for x1[k] then, finally, leads to

x1[k] = (1− h2

den)x1[k− 1] + hT2
f

den x2[k− 1] + h2

den y[k] (2)

den = (T2
f + 1.4hTf + h2)

Hence, the solution to the problem is given by Equations 1 and 2.

b. Since dyf (t)/dt = x2(t) the only remaining thing is to discretize the integral
part with a forward approximation which gives

I[k+ 1] = I[k] + K h
TI
(yre f [k] − yf [k])

which is the same as

I[k+ 1] = I[k] + K h
TI
(yre f [k] − x1[k])

The pseudocode for the controller looks like

// CalculateOutput
x1 = p1*x1old + p2*x2old + p3*y;
x2 = p4*x2old + p5*(y - x1old);
v = K*(Beta*yref - x1) + I - K*Td*x2;
u = sat(v);
// output u
// UpdateState
I = I + (K*h/Ti)*(yref - x1);
x1old = x1;
x2old = x2;

with the precalculated parameters

den = Tf*Tf + 1.4*h*Tf + h*h;
p1 = 1 - h*h/den;
p2 = h*Tf*Tf/den;
p3 = h*h/den;
p4 = Tf*Tf/den // equals p2/h
p5 = h/den; // equals p3/h

7.

4

a. First try the condition

n∑
i=1

Cmax
i
Ti

≤ n(21/n − 1)

We get

1
3 +

7
16 +

2
50 = 0.81 > 3(21/3 − 1) = 0.78

from which we can’t draw any conclusion.
Then try the condition

n∏
i=1

(Cmax
i
Ti

+ 1
)
≤ 2

We get
(

1
3 + 1

) (
7
16 + 1

)(
2

50 + 1
)
= 1.99 ≤ 2

Yes, all deadlines will be met.

b.

RA = Cmax
A = 1

R1
B = Cmax

B = 7

R2
B = Cmax

B +
⌈ R1

B
TA

⌉
⋅ Cmax

A = 7+
⌈

7
3

⌉
⋅ 1 = 10

R3
B = 7+

⌈
10
3

⌉
⋅ 1 = 11

R4
B = 7+

⌈
11
3

⌉
⋅ 1 = 11

R1
C = Cmax

C = 2

R2
C = Cmax

C +
⌈

R1
C

TA

⌉
⋅ Cmax

A +
⌈

R1
C

TB

⌉
⋅ Cmax

B = 2+
⌈

2
3

⌉
⋅ 1+

⌈
2

16

⌉
⋅ 7 = 10

R3
C = 2+

⌈
10
3

⌉
⋅ 1+

⌈
10
16

⌉
⋅ 7 = 13

R4
C = 2+

⌈
13
3

⌉
⋅ 1+

⌈
13
16

⌉
⋅ 7 = 14

R5
C = 2+

⌈
14
3

⌉
⋅ 1+

⌈
14
16

⌉
⋅ 7 = 14

5

c.

RA = Cmin
A = 0.5

R1
B = Cmin

B = 4

R2
B = Cmin

B +
⌈ R1

B − TA
TA

⌉
0

⋅ Cmin
A = 4+

⌈
4− 3

3

⌉
0

⋅ 0.5 = 4+ 1 ⋅ 0.5 = 4.5

R3
B = 4+

⌈
4.5− 3

3

⌉
0

⋅ 0.5 = 4+ 1 ⋅ 0.5 = 4.5

R1
C = Cmin

C = 1.5

R2
C = Cmin

C +
⌈

R1
C − TA
TA

⌉
0

⋅ Cmin
A +

⌈
R1

C − TB
TB

⌉
0

⋅ Cmin
B

= 1.5+
⌈

1.5− 3
3

⌉
0

⋅ 0.5+
⌈

1.5− 16
16

⌉
0

⋅ 4 = 1.5+ 0 ⋅ 0.5+ 0 ⋅ 4 = 1.5

8.

a. The solution is

public class Writer extends Thread {

MultiStepSemaphore sem;

public Writer(MultiStepSemaphore s) {
sem = s;

}

public void run() {
while (true) {
sem.take(3);

// access critical section
sem.give(3);

}
}

}

public class Reader extends Thread {

MultiStepSemaphore sem;

public Reader(MultiStepSemaphore s) {
sem = s;

}

public void run() {
while (true) {
sem.take();

// access critical section

6

sem.give();
}

}
}

public class Main {

public static void main(String[] args) {

MultiStepSemaphore s;
s = new MultiStepSemaphore(3);
Writer w;
Reader r;
for (int i = 1; i==3; i++) {
w = new Writer(s);
w.start();

}
for (int i = 1; i==4; i++) {
r = new Reader(s);
r.start();

}
}

b. The class ReadersWritersGuard is given below (with all exception handling
excluded):

public class ReadersWritersGuard {

int maxWriters = 1;
int maxReader = 1;

// the number of writer processes inside the section
int writersCounter = 0;

// the number of reader processes inside the section
int readersCounter = 0;

public ReadersWritersGuard() {}

public ReadersWritersGuard(int maxW, int maxR) {
this();
maxWriters = maxW;
maxReaders = maxR;

}

public synchronized void writersTake() {
while ((writersCounter == maxWriters) || (readersCounter > 0)) {

wait();
}
writersCounter++;

}

public synchronized void readersTake() {
while ((readersCounter == maxReaders) || (writersCounter > 0)) {

wait();

7

}
readersCounter++;

}

public synchronized void writersGive() {
writersCounter--;
notifyAll();

}

public synchronized void readersGive() {
readersCounter--;
notifyAll();

}
}

It should be used as

public class Writer extends Thread {

ReadersWritersGuard sem;

public Writer(ReadersWritersGuard s) {
sem = s;

}

public void run() {
while (true) {
sem.writersTake();

// access critical section
sem.writersGive();

}
}

}

public class Reader extends Thread {

ReadersWritersGuard sem;

public Reader(ReadersWritersGuard s) {
sem = s;

}

public void run() {
while (true) {
sem.readersTake();

// access critical section
sem.readersGive();

}
}

}

public class Main {

public static void main(String[] args) {

ReadersWritersGuard s;

8

s = new ReadersWritersGuard(2,3);
Writer w;
Reader r;
for (int i = 1; i==3; i++) {
w = new Writer(s);
w.start();

}
for (int i = 1; i==4; i++) {
r = new Reader(s);
r.start();

}
}

9

