Solutions to the exam in Real-Time Systems 130108

These solutions are available on WWW: Atip:/ /www.control.lth.se [course | FRTNOI /

1.

a. G1(z) has two poles in z = 1, which means that it should exhibit unstable
behavior. G3(z) and G4(z) only differs in the time constant, with G4(z)
faster than G3(z). G2(2z) has a pole on the negative real axis. Further, its
response is on the form x(n) = —0.99x(n — 1) = 0.99 % 0.99x(n —2) = --- =
(—0.99)"x(0). Therefore the matching is:

b. Gs(2) is a first order process. Yet, it has an oscillatory response. Thus, it
cannot be the result of zero-order hold sampling a first-order continuous

system.

a. The pulse-transfer function is given by

H(z) = C(zI —®)7'T
o
~[1 0]
0 z—1 0.5

_ 1 z—1 1 0
- [0](2—2)(2—1)[0 2_2”0.5]

05
T (z2—=2)(z—1)

b. The system has a pole outside the unit circle in z = 2, so it is unstable.

c. The closed-loop system is given by
x(kE+1)=(®—TL)x(k) +'l.r(k)
y(k) = Cx(k)
with the pulse-transfer function
H,(2) = C(zI —® +TL)71,

z—2 -1
0.5l z—1+40.5]y

-1 O
Ir
™

_[1 O] 1 z—1+4 0.5, 1 0 ;
- (z—2)(z— 1+ 0.5l3) + 0.51; —0.5]; z—2 05 |

=[1 0]

The characteristic polynomial (z — 2)(z — 1 + 0.5l5) + 0.5; = 22 + (0.5l —
3)z + 2 + 0.5]1 — I should be equal to 22 for deadbeat control, which gives

L=[s 6|
The static gain is H.;(1) = 0.5/,, which gives [, = 2.

Pulse Width Modulation. Used, e.g., in micro-controllers that have digital
outouts but no analog outputs. The analog value that should be output is
encoded through the duty cycle of of a square wave signal. For example, a
square wave signal that is high for 10% of the time and low for 90% of the
time will have a duty cycle of 10%. If this signal is sent through an analog
low-pass filter the output of the filter will approximate the desired analog
output, i.e, the average value of the square wave signal.

. Sampling the process using the table “Zero-order hold sampling of a continuous-
time system with transfer function G(s)” gives

0.6321
H(z) = 2222
()= 03679

The closed-loop system is given by

KH(z) 1.264
H = =
() = 1Y KHGE ~ 2+ 08964

The pole is located in —0.8964, inside the unit circle, so the closed-loop
system is stable.

. The sampled process, including a one sample delay, is now given by

0.6321
Hz)=———
(2) = Zz—03679)
The closed-loop system is given by
1.264

H —
() = 5036792 1 1.264

The poles are located in 0.1836 &+ 1.1092i, i.e., outside the unit circle, so the
closed-loop system in unstable.

. In fixed-point representation, a coefficient & should be stored as an integer
K =round(k - 2"), where the integer N is the number of fractional bits.

8-bit ints can store values in the range [—128,4+127], and the largest magni-
tude of any coefficient is 2.278. This means that no more than logy(128/2.78) =
5.81 fractional bits may be used. N = 5 gives the best resolution and should
hence be used.

The controller coefficients become
A =round(0.1466 - 2°) = 5 B = round(1.050 - 25) = 34
C = round(1.517 - 25) = 49 D = round(—2.278 - 2°) = —73

b. The pole is located in A/25 = 0.1562, i.e., a 6% error in pole location.

C. #define A 5
#define B 34
#define C 49
#define D -73
#define N 5

uint_8 y, x, u;
uint_16 x16 = 0, ul6é = 0;

y = readInput();

/* calculate output */
ul6 = (ul6 + (int16_t)D*(intl6_t)y)>>N; /* add Dxy */
/* check for saturation */
if (ui6 > 127) {
u = 127;
} else if (u16 < -128) {
u = -128;
} else {
u = ul6;
}
writeOutput (u);

/* update state */
x16 = ((int16_t)A*(int16_t)x + (int16_t)B*(intl6_t)y)>>N;
/* check for saturation */
if (x16 > 127) {
x = 127,
} else if (x16 < -128) {
x = -128;
} else {
x = x16;
}
ul6 = (int16_t)Cx(intl6_t)x;

a. Replacing dx1(¢)/dt with a backward difference approximation gives
xl[k] = xl[k — 1] + hxg [k]
Replacing dxs(t)/dt with a backward difference approximation gives

bl = lk =1 = 7 Pl — b + ol

Replacing x1[%k] with the first expression gives
1.4h h h?

xglk] = x9[k — 1] — T—fx2 [k] — T—%xl[k —1] - T_]?x2[k] + %y[k]

Rearranging the terms leads to

14k R2 h h
T—f + T—?)m[k] = xak — 1] — T_?xl[k -1+ T—%y[k]

1+

or
1

k| =
x2lk] (T2 + L4RT; + 1?)

(TFxzlk — 1] — hai[k — 1] + hy[k]) (1)

Inserting this into the equation for x1[%] then, finally, leads to

2 hT? 2
wlt = (- yale— 1+ - Lok—1+ 2 3t (@)

den = (T} + 1.4hT; + h?)
Hence, the solution to the problem is given by Equations 1 and 2.

. Since dy¢(t)/dt = x2(t) the only remaining thing is to discretize the integral
part with a forward approximation which gives

Ik -+ 1] = 1181 + 7 OrelE] = 3714)
which is the same as
Ik + 1) = T[E] + 7 GrerlH] = 8]

The pseudocode for the controller looks like

// CalculateOutput

x1 = pl*xlold + p2*x20ld + p3x*y;

x2 = p4*x20ld + pbx(y - xlold);

v = Kx(Betaxyref - x1) + I - K*Td*x2;
u = sat(v);

// output u

// UpdateState

I =1+ (K«h/Ti)*(yref - x1);

xlold = x1;

x201d x2;

with the precalculated parameters

den = TEf*Tf + 1.4xh*xTf + hxh;

pl = 1 - hxh/den;

p2 = h*Tf*Tf/den;

p3 = hxh/den;

p4 = Tf*Tf/den // equals p2/h
p5 = h/den; // equals p3/h

. First try the condition

We get

1

3

7
16

50

+—+3=0.81>3

from which we can’t draw any conclusion.

Then try the condition

We get

1
~+1

11

i=1

)(

(

7
L
16"

Yes, all deadlines will be met.

Rl — Cgtax
R2 — Cgtax
R}y =2+
Rt =2+
Ry =2+

max
Cl

J 1)<2
Ti +>_

50

Ry =Cpex =1
R2_cmax+’7R_lB“ (max 7+’7
= Cjg T nor =
R3=7+{%q-1=11
R4:7+F§111:11
=2
RIC max RIC
107 107
§0 1+ 1—2 7=13
13 [13]
% 1+ % 7=14

@2 - 1)

=0.78

—+1>=1.99§2

) (&

Ry =Cp'" =05

4—-3

45—3
R%=4+[w 05=4+1-05=45

Ry =Cg" =15

R2 = gzin+ |VR}IT_TA-‘ . zlin_i_ |VR}IT_TB-‘ . glin
4 o B o

16

7W SO =4 4 [—w 05=4+1-05=45
0 3 0

15-3 15—-16
=15+ [3 w 0.5+ {————————W -4=15+0-054+0-4=1.5
0 0

a. The solution is
public class Writer extends Thread {
MultiStepSemaphore sem;

public Writer (MultiStepSemaphore s) {
sem = s;

}

public void run() {
while (true) {
sem.take(3);
// access critical section
sem.give(3);
}
}
}

public class Reader extends Thread {
MultiStepSemaphore sem;

public Reader (MultiStepSemaphore s) {
sem = s;

}

public void run() {
while (true) {
sem.take();
// access critical section

sem.give();
}
}
}

public class Main {
public static void main(String[] args) {

MultiStepSemaphore s;

s = new MultiStepSemaphore(3);

Writer w;

Reader r;

for (int i = 1; i==3; i++) {
w = new Writer(s);
w.start();

}

for (int i = 1; i==4; i++) {
r = new Reader(s);
r.start();

}

}

b. The class ReadersWritersGuard is given below (with all exception handling
excluded):

public class ReadersWritersGuard {

int maxWriters = 1;
int maxReader = 1;

// the number of writer processes inside the section
int writersCounter = O;

// the number of reader processes inside the section
int readersCounter = 0;

public ReadersWritersGuard() {}

public ReadersWritersGuard(int maxW, int maxR) {
this();
maxWriters = maxW;
maxReaders maxR;

3

public synchronized void writersTake() {
while ((writersCounter == maxWriters) || (readersCounter > 0)) {
wait();
}
writersCounter++;

3

public synchronized void readersTake() {
while ((readersCounter == maxReaders) || (writersCounter > 0)) {
wait();

3

readersCounter++;

}

public synchronized void writersGive() {
writersCounter—--;
notifyAll1Q);

}

public synchronized void readersGive() {
readersCounter--;
notifyAl1Q);

It should be used as
public class Writer extends Thread {
ReadersWritersGuard sem;

public Writer (ReadersWritersGuard s) {
sem = s;

}

public void run() {
while (true) {
sem.writersTake();
// access critical section
sem.writersGive();
}
}
}

public class Reader extends Thread {
ReadersWritersGuard sem;

public Reader (ReadersWritersGuard s) {
sem = s;

}

public void run() {
while (true) {
sem.readersTake() ;
// access critical section
sem.readersGive();
}
}
}

public class Main {
public static void main(String[] args) {

ReadersWritersGuard s;

s = new ReadersWritersGuard(2,3);

Writer w;

Reader r;

for (int i = 1; i==3; i++) {
w = new Writer(s);
w.start(Q);

}

for (int i = 1; i==4; i++) {
r = new Reader(s);
r.start();

}

}

