
Department of

AUTOMATIC CONTROL

Real-Time Systems

Exam June 1, 2016, hours: 14.00–19.00

Points and grades

All answers must include a clear motivation and a well-formulated answer.

Answers may be given in English or Swedish. The total number of points is 25.

The maximum number of points is specified for each subproblem.

Accepted aid

The textbooks Real-Time Control Systems and Computer Control: An Overview

- Educational Version. Standard mathematical tables and authorized “Real-Time

Systems Formula Sheet”. Pocket calculator.

Results

The result of the exam will become accessible through LADOK. The solutions will

be available on WWW:

http://www.control.lth.se/course/FRTN01/

1



Solutions to the exam in Real-Time Systems 160601

These solutions are available on WWW:

http://www.control.lth.se/course/FRTN01/

1. Consider the continuous-time system

dx

dt
=









0 1

0 0








x+









0

1








u

y =


 1 0



 x

Sample the system using ZOH and sampling period h = 2. (1 p)

Solution

Φ(h) = eAh =
∑

k≥0

1

k!
Akhk = I + Ah =

[

1 h

0 1

]

Γ(h) =

∫ h

0

eAt B dt =

∫ h

0

[

t

1

]

dt =

[

t2/2

t

]∣

∣

∣

∣

∣

h

t=0

=

[

h2/2

h

]

x(k + 1) =

[

1 h

0 1

]

x(k) +

[

h2/2

h

]

u(k).

The system then becomes

x(k+ 1) =

[

1 2

0 1

]

x(k) +

[

2

2

]

u(k).

2. Consider the two SISO controller structures in Figure 1 and Figure 2.

a. How do you motivate a change from the structure in Figure 1 to the structure

in Figure 2? (1 p)

b. What is the transfer function from r to y in Figure 2? (1 p)

r e u y
C(z) P(z)

−1

Σ

Figure 1 The old structure in Problem 2.

Solution

2



r y
C(z) P(z)

G f f (z)

Gm(z)

−1

ym

u f f

Σ Σ

Figure 2 The new structure in Problem 2.

a. In the original structure, C(z) is responsible for handling both set-point

changes and disturbances. This means that there is a trade off in the perfor-

mance. In the new structure, the problems have been separated. C(z) now

handles disturbances and Gm(z) and G f f (z) handles set-point changes. This

gives one more degree of freedom and therefore often better performance.

b.

Y (z) =
P(G f f (z) + C(z)Gm(z))

1+ P(z)C(z)
R(z).

3. Given the following continuous-time system:

ẋ (t) =

(

−6 1

−9 0

)

x (t) +

(

0

1

)

u (t)

y (t) = ( 1 0 ) x (t) .

a. Compute the continuous-time transfer-function and determine if the system

is stable. (1 p)

b. Approximate the continuous-time transfer-function with a discrete time pulse-

transfer function using forward difference and h = 1. Determine if the

discrete-time system is stable. (1 p)

c. Now approximate the continuous-time system using Tustin instead. Deter-

mine the poles of the discrete-time system and whether it is stable or not.

(1 p)

Solution

a. The cont. transfer function is given by

G (s) = C (sI − A)−1
B =

1

s2 + 6s+ 9
=

1

(s+ 3)2
.

So the poles are located in s = −3 and the system is stable.

3



b. With forward difference the approximation is given by H (z) = G (s′) with

s′ = z− 1.

H (z) =
1

(s′ + 3)2
=

1

(z− 1+ 3)2
=

1

(z+ 2)2
.

So the poles are located in z = −2, which is outside the unit circle, and the

discrete-time system is unstable. (Sample time h = 1)

c. With Tustin approximation we have that s′ =
2

h
·

z− 1

z+ 1
, with h = 1 we get:

H (z) = G
(

s′
)

=
1

(

2
z− 1

z+ 1
+ 3

)2
=

1
(

2
z− 1

z+ 1

)2

+ 6 · 2
z− 1

z+ 1
+ 9

=
(z+ 1)2

4 (z− 1)2 + 12 (z− 1) (z+ 1) + 9 (z+ 1)2

=
(z+ 1)2

4z2 − 8z+ 4+ 12z2 − 12+ 9z2 + 18z+ 9

=
(z+ 1)2

25z2 + 10z+ 1
=

1

25
·

(z+ 1)2

z2 +
10

25
z+

1

25

=
0.4 (z+ 1)2

z2 + 0.4z+ 0.04
=

0.4 (z+ 1)2

(z+ 0.2)2
.

So there is a zero at z = −1 and two poles at z = −0.2, which is within the

unit circle and hence the system is stable.

4. Consider the following discrete-time system

x(k + 1) =









1 h

0 1








x(k) +









h2/2

h








u(k)

y(k) =


 1 0



 x(k).

a. Design a state feedback controller u(k) = −Lx(k). Choose the closed loop

characteristic polynomial in such a way that the sampled dynamics with

h = 0.1 s corresponds to a continuous-time double pole in s = −1. (1 p)

b. Design an observer in the form

x̂(k+ 1 p k) = Φ x̂(k p k− 1) + Γu(k) + K
(

y(k) − Cx̂(k p k− 1)
)

such that the observer dynamics is twice as fast as the closed loop dynamics,

i.e., corresponds to a continuous-time double pole in s = −2. (1 p)

c. Design a model and feedforward generator in such a way that

1. The states of the model are compatible with the process states.

4



2. The discrete-time model dynamics corresponds to a continuous-time dou-

ble pole in s = −2.

3. The steady state gain from the command signal uc to y should be 1.

(2 p)

d. Write pseudo-code for the calculations that should be implemented in the

controller, i.e., the calculations needed to implement the state feedback, the

observer, and the model and feedforward generator. Write the code so that the

input-output latency is minimized, i.e. split up the code in two parts: Calcula-

teOutput and UpdateState, where the amount of code in CalculateOutput is

minimized. Do all possible pre-calculations in UpdateState. Your pseudo-code

may contain matrix expressions involving both scalar and vector variables,

e.g., it is OK to write u = −Lx as a statement. Use x̂ to denote the estimated

state vector and xm to denote the model state vector. (2 p)

Solution

a. A continuous-time double pole in s = −1 corresponds to a discrete-time double

pole in e−h = e−0.1, i.e., the desired closed loop characteristic polynomial

should be

(z− e−0.1)2 = z2 − 2e−0.1z+ e−0.2 = z2 + p1z+ p2.

With the linear feedback

u(k) = −l1x1(k) − l2x2(k)

the closed-loop system becomes

x(k+ 1) =









1− l1h2/2 h− l2h2/2

−l1h 1− l2h








x(k).

The characteristic polynomial of the closed-loop system is

z2 +

(

l1h2

2
+ l2h − 2

)

z+

(

l1h2

2
− l2h + 1

)

.

Comparing this with the desired characteristic polynomial leads to the follow-

ing linear equations for l1 and l2

h2l1

2
+ hl2 − 2 = p1

h2l1

2
− hl2 + 1 = p2

with the solution

l1 =
1

h2
(1+ p1 + p2) = 0.9056

l2 =
1

2h
(3+ p1 − p2) = 1.8580

.

5



b. The characteristic polynomial of the observer is given by

det(zI − Φ+ KC) = det









z− 1+ k1 −0.1

k2 z− 1









= z2 + (k1 − 2)z+ 1− k1 + 0.1k2

.

The desired characteristic polynomial is

(z− e−0.2)2 = z2 − 2e−0.2z+ e−0.4

Equating the coefficients we get

{

k1 − 2 = −2e−0.2

1− k1 + 0.1k2 = e−0.4

[ K =


 0.3625 0.3286





T

.

c. The model and feedforward generator design is based is performed as follows.

In order to make sure that the states of the model are compatible with the

states of the process the following approach can be used. To begin with the

model can be chosen identical to the process, i.e.,

xm(k+ 1) = Φxm(k) + Γu f f (k)

ym(k) = Cxm(k)
. (1)

The dynamics of the model can then be modified by the linear control law

u f f (k) = −Lmxm(k) + lruc(k). (2)

The model dynamics is then given by

xm(k+ 1) = (Φ − ΓLm)xm(k) + Γlruc(k)

ym(k) = Cxm(k)
. (3)

Here, Lm is chosen to give the model the desired eigenvalues and lr is chosen

to give the model a static gain of 1. The feedforward control signal u f f (k) is

generated in such a way that it will give the desired behavior when used as

an input to the process.

The desired characteristic polynomial of the model is given by

(z− e−2h)2 = (z− e−0.2)2 = z2 − 2e−0.2z+ e−0.4

From the first sub-problem it follows that the coefficients of Lm should be

chosen as

l1 =
1

h2
(1+ p1 + p2) = 3.2859

l2 =
1

2h
(3+ p1 − p2) = 3.4611

Finally, lr is chosen to get the static gain 1. This is obtained by setting

lr =
1

C(I − Φ+ ΓLm)−1Γ
= 3.2

6



d. Both the observer and the process model should be updated in UpdateState.

Also in UpdateState pre-calculations can be done both for u and for u f f . This

leads to the following pseudo-code:

CalculateOutput:

Sample y and obtain uc

u f f = u f f + lruc

u = u+ u f f

Output u

Update State:

x̂ = Φ x̂+ Γu+ K(y− Cx̂)
xm = Φxm + Γu f f

u f f = −Lmxm

u = L(xm − x̂)

5. The operation

x = a · b

should be performed using a fixed-point implementation. In the operation,

a is a constant with value 1.35. 8-bits signed variables should be used to

represent x, a and b.

a. Choose an appropriate number of fractional bits for a and convert a into the

corresponding fixed-point representation. (1 p)

b. Zero fractional bits are used to represent x and b. Complete the code skeleton

below to compute x. In case of overflow, the result should be saturated. 16-bits

variables may be used for intermediate results. (1 p)

#include <inttypes.h>

// Insert in the next two lines the

// results from the first subproblem

#define n ... // number of fractional bits

#define a ... // fixed-point representation of a

int8_t x, b;

// define more variables if needed

...

// assume b is initialized to a value (you don’t need to writ

// the code for the initialization of b)

// write the code to compute x

...

x = ...

Solution

a. Since 1 ≤ a < 2, only one bit is needed to represent the integer part and

8−1−1 = 6 bits are left for the fractional part. The fixed point representation

of a is round(1.35 · 26) = 86.

7



b. In the following code, the result of the multiplication is saved in a temporary

variable, which has type int16_t. The value is then saturated to handle

overflows and underflows and finally casted into its corresponding int8_t

value.

#include <inttypes.h>

// Insert in the next two lines the

// results from the first subproblem

#define n 6

#define a 86

int8_t x, b;

// define more variables if needed

int16_t temporary;

// assume b is initialized to a value (you don’t need to write

// the code for the initialization of b)

// write the code to compute x

temporary = ((int16_t) a*b) >> n;

if (temporary > 127)

temporary = 127;

else if (temporary < -128)

temporary = -128;

x = (int8_t) temporary;

6. An engineer has implemented a real-time control system using three threads.

The first one is the control thread, which must execute at a sampling rate of

4 milliseconds. The second one is a reference generator, which should update

the reference value every 12 milliseconds. The third one is a user interface

thread, which should update the plotters 50 times per second. The engineer

has timed precisely the execution of the reference generator, 4 milliseconds,

and of the user interaction thread, 9 milliseconds. However, she does not know

exactly how much time the control thread takes to execute. Assume an ideal

kernel.

a. What is the maximum controller execution time allowed if the task set is to

be schedulable using Earliest Deadline First scheduling? (1 p)

b. Assume that the deadline Di for each thread is equal to the period Ti. Assume

that the controller execution time is 0.5 milliseconds and that all blocking due

to inter-process communication can be ignored. Will the task set be schedu-

lable using Earliest Deadline First scheduling? And using rate monotonic

priority assignments? (3 p)

Solution

a. Denoting the control task execution time with x it is possible to compute the

utilization as

U =
x

4
+

4

12
+

9

20

8



where 20 is the period of the user interaction tasks in milliseconds obtained as

1000/50. For schedulability the utilization should be less than 1 and imposing

the conditions above gives x < 0.867 milliseconds.

b. As stated above, the task set is schedulable using EDF. For monotonic priority

assignments, a sufficient schedulability criterion is if the utilization satisfies

the condition
i=n
∑

i=1

≤ n(21/n − 1).

But the utilization for the given task set is

i=n
∑

i=1

= 0.5/4+ 4/12+ 9/20 = 0.9083 ≥ 3(21/3 − 1) ( 0.78

and we can not conclude that the tasks are schedulable. We instead turn to

the exact analysis, where the response time for process i can be calculated

from iteration of the equation

Ri = Ci +
∑

j∈hp(i)

⌈

Ri

Tj

⌉

C j.

The highest priority task is the control task, which will trivially have a

response time which we denote R1 = C1 = x = 0.5 ms. For the medium

priority reference generator we get, with initial guess R0
2 = C2 = 4:

R1
2 = C2 +

⌈

R0
2

T1

⌉

C1 = 4+

⌈

4

4

⌉

0.5 = 4.5

R2
2 = C2 +

⌈

R1
2

T1

⌉

C1 = 4+

⌈

4.5

4

⌉

0.5 = 5.0

R3
2 = C2 +

⌈

R2
2

T1

⌉

C1 = 4+

⌈

5.0

4

⌉

0.5 = 5.0

which gives R2 = 5.0 ms. For the user I/O task, with initial guess R0
3 = C3 = 9

we get

R1
3 = C3 +

⌈

R0
3

T1

⌉

C1 +

⌈

R0
3

T2

⌉

C2 = 9+

⌈

9

4

⌉

0.5+

⌈

9

12

⌉

4 = 14.5

R2
3 = C3 +

⌈

R1
3

T1

⌉

C1 +

⌈

R1
3

T2

⌉

C2 = 9+

⌈

14.5

4

⌉

0.5+

⌈

14.5

12

⌉

4 = 19

R3
3 = C3 +

⌈

R2
3

T1

⌉

C1 +

⌈

R2
3

T2

⌉

C2 = 9+

⌈

19

4

⌉

0.5+

⌈

19

12

⌉

4 = 19.5

R4
3 = C3 +

⌈

R3
3

T1

⌉

C1 +

⌈

R3
3

T2

⌉

C2 = 9+

⌈

19.5

4

⌉

0.5+

⌈

19.5

12

⌉

4 = 19.5

which gives R3 = 19.5 ms. All tasks will therefore meet their deadlines.

7. The Traffic Control Agency (T.C.A) are currently developing a new structure

for the traffic light in a crossing. They have just heard about Petri nets, and

the ability to represent real-time systems with it.

9



Red

T1

Green

T2

Orange

T3

Traffic Light A

Red

T1

Green

T2

Orange

T3

Traffic Light B

Figure 3 Petri Net over two traffic lights, developed by the Traffic Control Agency. The goal

is to control the two traffic lights and assure that the green lights are mutually exclusive.

Red

T1

Green

T2

Orange

T3

Traffic Light A

Red

T1

Green

T2

Orange

T3

Traffic Light B

Figure 4 K.T.H’s solution to the problem of the Traffic Control Agency.

So far they have developed two Petri nets (see Fig. 3), one for each traffic light,

that they wish to use. However, they wish to connect the two traffic lights

with each other and have now turned to the Automatic Control community

for help. The only specification they have so far is:

• The green lights should be mutually exclusive (only one can shine at

every given moment).

• The original Petri net developed by the T.C.A must be part of the solution.

a. The first person T.C.A reached out to for help was Klas Theodor Hoppsan

(K.T.H), who studied at an unknown university in Sweden. He came up with

the solution shown in Fig. 4. Explain and illustrate whether or not his solution

is:

• unbounded

• mutually exclusive (w.r.t. the green lights)

(2 p)

10



Red

T1

Green

T2

Orange

T3

Traffic Light A

Red

T1

Green

T2

Orange

T3

Traffic Light B

(a) Before A.T3 firing

Red

T1

Green

T2

Orange

T3

Traffic Light A

Red

T1

Green

T2

Orange

T3

Traffic Light B

(b) After A.T3 firing

Figure 5 Illustration of the unboundedness of the suggested solution.

Red

T1

Green

T2

Orange

T3

Traffic Light A

Red

T1

Green

T2

Orange

T3

Traffic Light B

(a) Before A.T1 and B.T1 firing

Red

T1

Green

T2

Orange

T3

Traffic Light A

Red

T1

Green

T2

Orange

T3

Traffic Light B

(b) After A.T1 and B.T1 firing

Figure 6 Illustration of the lack of mutual exclusion of the suggested solution.

b. Disappointed with what K.T.H produced they now turn to you for help. Using

the Petri net in Fig. 3 as a starting point, extend it and develop a new solution

that is:

• mutually exclusive (the green lights)

• unbounded

(2 p)

Solution

a. The suggested solution is indeed unbounded. Every time traffic light A fire

transition T3 a new token will appear in B.Red, even though it might already

have one there. See Fig. 5.

The suggested solution is clearly not mutually exclusive since there is nothing

preventing it from firing both A.T1 and B.T1 simultaneously, see Fig 6.

b. To solve all problems all one needs to do is to add a semaphore that is shared

between the two traffic lights. The extended solution can be seen in Fig. 7.

11



Red

T1

Green

T2

Orange

T3

Traffic Light A

Red

T1

Green

T2

Orange

T3

Traffic Light B

Sempahore

Figure 7 Solution that ensures both boundedness and mutual exclusion between the green

lights.

8. Consider the following Java implementation of a PI-controller which is struc-

tured into one PI class and one Regul class.

public class PI {

private double y, yref, v;

private double I = 0.0;

private double K = 0.0;

private double Ti = 0.0;

private double Tr = 0.0;

private double H = 0.0;

private double Beta = 0.0;

public PI(Reference ref) {

setParameters(1.0,10.0,10.0,1.0);

}

public synchronized double calculateOutput(double y, double yref) {

this.y = y;

this.yref = yref;

v = K*(Beta*yref - y) + I;

return v;

}

public synchronized void updateState(double u) {

I = I + K*H/Ti*(yref - y) + (H/Tr)*(u - v);

}

public synchronized long getHMillis() {

return (long)(H*1000.0); //Sampling interval in milliseconds

}

public synchronized void setParameters(double K, double Ti,

double Tr, double Beta) {

this.K = K;

this.Ti = Ti;

this.Tr = Tr;

this.Beta = Beta;

12



}

}

// ---------------------------------------------------------------------------

public class Regul extends Thread {

private Reference ref;

private PI pi = new PI();

private AnalogIn yChan;

private AnalogOut uChan;

private long h;

private double y,yref,v,u;

private double uMax = 10.0;

private double uMin = -10.0;

public Regul(Reference ref) {

this.ref = ref;

try {

yChan = new AnalogIn(1);

uChan = new AnalogOut(1);

} catch (Exception e) {

System.out.println(e);

}

}

private double limit(double v, double min, double max) {

if (v < min) {

v = min;

} else {

if (v > max) {

v = max;

}

}

return v;

}

public void run() {

setPriority(7);

long duration;

long t=System.currentTimeMillis();

while (true) {

yref = ref.getReference();

y = yChan.get();

synchronized(pi) { // To avoid parameter changes inbetween

v = pi.calculateOutput(y, yref);

u = limit(v,uMin,uMax);

uChan.set(u);

pi.updateState(u);

}

t = t + pi.getHMillis();

duration = t - System.currentTimeMillis();

if (duration > 0) {

try {

sleep(duration);

} catch (Exception x) {

13



}

}

}

}

}

In addition to the Regul thread, the application also contains other threads

of lower priority than Regul.

a. When starting the application it was detected that something was wrong.

However, the controller appeared to do some type of control. What type of

controller does the code realize? (1 p)

b. When first testing the controller, the native thread model in Java was used.

After a while this was changed to the green thread model. Then, a different

timing behavior was obtained. Describe the timing behavior using the two

thread models and the reasons for the behavior. (2 p)

Solution

a. The sampling interval, H, in the code will always be 0. This means that the

PI controller will execute as a P-Controller. The Regul thread will never sleep.

This means that the sampling interval of the P-controller will be very short

and will depend on the speed of the computer.

b. In the green thread model, the JVM will follow the thread priorities strictly.

This means that Regul will take all the CPU time and no other threads will

run, i.e. starvation. In the native thread model, the execution of the Java

threads is mapped down to the underlying OS threads, e.g., Linux threads.

These threads normally execute at the same priority and employ time-sharing.

The effect of this is that the threads with lower priority than Regul will still

execute, albeit possibly with a slower speed.

14


