
Solutions to the exam in Real-Time Systems 131217

These solutions are available on WWW: http://www.control.lth.se/course/FRTN01/

1. Alternative A matches the alternative semaphore implementation. In signal
the counter is always updated and the first process in the waiting queue is
released. In wait a process that is woken up again is forced to recheck the
counter value through the infinite loop construct.
Alternative B matches the ordinary semaphore implementation. In signal
the first process in the waiting queue is released. The counter is only up-
dated if there is no other waiting task. In wait a process that is woken up
again can proceed directly and enter the critical section.

2.

a. To find y(3) we iterate the system equation.

x(1) = Φx(0) + Γu(0) =
[ 0.75 0.1

0 0.5

] [ 0
0

]
+

[ 1
2

]
5 =

[ 5
10

]

x(2) = Φx(1) + Γu(1) =
[ 0.75 0.1

0 0.5

] [ 5
10

]
+
[ 1

2

]
5 =

[ 9.75
15

]

x(3) = Φx(2) + Γu(2) =
[ 0.75 0.1

0 0.5

] [ 9.75
15

]
+
[ 1

2

]
5 =

[ 13.8125
17.5

]

Then we calculate the output of the system using

y(3) = Cx(3) = [1 2 ]
[ 13.8125

17.5

]
= 48.8125

b. To find out if the system will converge we must check that it is stable.
A discrete linear time-invariant system is stable if the poles of the pulse
transfer function (or equivalently the eigenvalues of the dynamics matrix)
all are inside the unit circle. The pulse transfer function of the system is

H(z) = C(zI − Φ)−1Γ = 5z− 3.3
z2− 1.25z+ 0.375

and the system has its two poles in 0.5 and 0.75 and is, hence, stable.
The system will eventually converge to the value limt→∞ y(t) = H(1) ∗ 5 =

1.7
0.125 ∗ 5 = 68.

3.

a. The observer gain matrix K is given by the equation det(zI−(Φ− K C)) =
det(

[ z− 2+ k1 −1
k2 z− 1

]
) = (z−2+k1)(z−1)+k2 = z2+(k1−3)z+2−k1+k2 =

(z− p1)(z− p2) = z2. This gives us K = [3 1 ]T .

b. The state feedback matrix L is given by the equation det(zI−(Φ− B L)) =
z2. This gives us L = [8 6 ].
Inserting the control law in the state space system gives us

x(k+ 1) = Φx(k) + Γ(−Lx(k) + lrr(k)) = (Φ − Γ L)x(l) + Γlrr(k).
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The pulse transfer function of this system is

H(z) = C(zI − (Φ − Γ L))−1Γlr = lr
2z2 .

H(1) = 1 gives us lr = 2.

c. private double x1Hat = 0, x2Hat = 0, u = 0, y = 0, r = 0, e = 0;
private double uHelp = 0;

private final double k1 = 3, k2 = 1;
private final double l1 = 8, l2 = 6, lr = 2;
private final double phi11 = 2, phi12 = 1, phi 22 = 1;
private final double gam2 = 0.5;
private final double c1 = 1;

while (1) {
y = getY();
r = getReference();

u = uHelp + lr*r;

outputU(u);

e = y - c1*x1Hat;
x1HatNew = phi11*x1Hat + phi12*x2Hat + k1*e;
x2HatNew = phi22*x2Hat + gam2*u + k2*e;

x1Hat = x1HatNew;
x2Hat = x2HatNew;

uHelp = -l1*x1Hat - l2*x2Hat;

sleep();
}

4.

a. All of them! Since the controllers are rate monotonic and have higher prior-
ity than the logger, the choice of Tlo��er will not affect the controllers. The
two controller tasks will both meet their deadlines which can be seen from
the approximate analysis (may be used since Ti = Di), i.e.,

2
8 +

4
12 = 0.583 ≤ 2(21/2 − 1) = 0.828

b. The first schedulability test gives that if Tlo��er ≥ 5
3(21/3−1)− 2

8− 4
12
� 25.45,

the logger is guaranteed to meet its dealines. Otherwise, the logger may
not meet its deadlines. Since Tlo��er > TController2 it is OK to use the ap-
proximate rate monotonic analysis.
The second schedulability test gives that

(28 + 1)( 4
12 + 1)( 5

Tlo��er
+ 1) ≤ 2
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From this one can show that Tlo��er ≥ 25. This is also the least restrictive
condition. Hence, the answer should be Tlo��er ≥ 25.

c. Since the logger has the lowest priority it is sufficient if we do the response
time analysis for this task. We then get

R0 = 0
R1 = C = 5

R2 = 5+
⌈

5
8

⌉
2+

⌈
5

12

⌉
4 = 11

R3 = 5+
⌈

11
8

⌉
2+

⌈
11
12

⌉
4 = 13

R4 = 5+
⌈

13
8

⌉
2+

⌈
13
12

⌉
4 = 17

R5 = 5+
⌈

17
8

⌉
2+

⌈
17
12

⌉
4 = 19

R6 = 5+
⌈

19
8

⌉
2+

⌈
19
12

⌉
4 = 19

Hence, if we set the deadline and the period of the logger task larger or
equal to 19 then all the tasks will meet their deadline.

5.

a. With the forward difference we approximate s with s′ = z−1
h . This gives us

the filter 2π fch
z+2π fch−1 . For fc = 20Hz we get a discrete pole on the positive

real axis (in 0.9987) , which approximates a low pass filter well. For fc >
1

2π h � 15 kHz we get a discrete pole on the negative real axis which will
cause the filter output to switch sign around the filters steady state value.
The pole for fc = 20kHz lies at -0.309. This is a bad approximation of this
first order low-pass filter which will never get this ringing behaviour.

b. With Tustin’s approximation we instead approximate s with s′ = 2(z−1)
h(z+1) . This

gives us the filter (π fch)z+π fch
(π fch+1)z+π fch−1 with the pole in −π fch−1

π fch+1. For fc = 20Hz
the pole will be at 0.9987 and for fc = 20kHz the pole will be at 0.2088, i.e.
the pole of the filter will always be on the positive real axis.

c. With γ = π fch, we get the difference equation ((γ + 1)z + γ − 1)y(k) =
(γ z + γ )u(k) or y(k + 1) = γ u(k+1)+γ u(k)−(γ −1)y(k)

γ +1 . The implementation is
then

public static final double h = 1.0 / 96000;
private double uOld = 0, yOld = 0;
public double tustinLP(double u, double fc) {

double y;
double gamma = Math.PI*h*fc;
y = (gamma*(u + uOld - yOld) + yOld)/(gamma+1);
yOld = y;
uOld = u;
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return y;
}

6.

a. The transfer function from uc to y is

Hyuc =
P(H f f + CHm)

1+ PC

Choose
H f f = Hm

P
Then

Hyuc =
P(Hm

P + CHm)
1+ PC = Hm

b. In order for H f f to be implementable it must be causal and stable. It is
causal if the order of the denominator is larger than or equal to the order of
the numerator. It is (asymptotically) stable if the poles are inside the unit
circle. Since

H f f (z) =
Hm
P =

Bm(z)
Am(z)
B(z)
A(z)

= Bm(z)A(z)
Am(z)B(z)

The constraint on causality gives that the Hm(z) must have at least the
same pole excess as P. The constraint on stability gives that any unstable
zeros of P(z), i.e., the unstable parts of B(z), must also be included in
Hm(z), i.e., be part of Bm(z).

c. The reason for the ringing is zero in -0.9672, i.e., on the negative real axis.
The transfer function, Huuc from uc to u is given by

Huuc =
P(Hm

P + CHm)
P(1+ PC) = Hm

P

Hence, the poorly damped zero of P is the cause of the ringing.
The problem is avoided by including not only the unstable parts of B(z) in
Hm, but also poorly damped zeros and zeros on the negative real axis. This
can be done by modifying Hm to

Hm(z) = 0.034147(z+ 0.9672)
(z− 0.7408)2

7. The solution below does not handle spurious wakeups.

public class CyclicBarrier {

private int parties;
private int barrierLimit;

public CyclicBarrier(int parties) {
this.parties = parties;
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barrierLimit = parties;
}

public synchronized int await() {
int threadNum:
parties = parties - 1;
threadNum = parties;
if (parties == 0) {
parties = barrierLimit;
notifyAll();
return threadNum;

} else {
wait(); // Here the exception handling around wait() has been omitted

}
return threadNum;

}
}

}
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