
Department of

AUTOMATIC CONTROL

Real-Time Systems
Exam December 17, 2013, hours: 8.00–13.00

Points and grades
All answers must include a clear motivation and a well-formulated
answer. Answers may be given in English or Swedish. The total number of
points is 25. The maximum number of points is specified for each subproblem.

Accepted aid
The textbooks Real-Time Control Systems and Computer Control: An Overview -
Educational Version. Standard mathematical tables and authorized “Real-Time
Systems Formula Sheet”. Pocket calculator.

Results
The result of the exam will become accessible through LADOK. The solutions
will be available on WWW:
http://www.control.lth.se/course/FRTN01/

1



1. In the course two different semantics for counting semaphores have been
presented, the ordinary semaphore implementation (pg. 42-43 in RTCS)
and the alternative semaphore implementation (pg. 45 in RTCS).
Match each implementation with one of the following descriptions. Also
describe what it is in the definition of wait and signal that achieves this
functionality. (2 p)

A: When a task leaves a critical section, i.e., release the semaphore,
it checks if there are any tasks waiting for the semaphore and in
that case wakes up the highest priority task among those, so that
it may compete for the semaphore with other tasks.

B: When a task leaves a critical section, i.e., release the semaphore,
it checks if there are any tasks waiting for the semaphore and in
that case wakes up the highest priority task among those and
hands over the semaphore to it.

2. Consider the following discrete time system

x(k+ 1) =
[ 0.75 0.1

0 0.5

]
x(k) +

[ 1
2

]
u(k)

y(k) = [ 1 2 ] x(k).
The input to this system is constant, u(k) = 5.

a. Simulate the system with the initial state x(0) = [ 0 0 ]T , and calculate
y(3) (the output at time k = 3). (1.5 p)

b. Will the system converge, and in that case, to what output value? (1 p)

3. A process has the discrete state-space representation

x(k+ 1) =
[ 2 1

0 1

]
x(k) +

[ 0
0.5

]
u(k)

y(k) = [1 0 ] x(k)

a. Design a dead-beat predictor-form observer for the process. (1 p)
b. The observer will be used together with a state feedback on the form u(k) =
−Lx(k) + lrr(k). Design a dead-beat state feedback. Determine the closed
loop pulse transfer function from reference signal r to output y and decide
lr to make sure that y(k) = r(k) in stationarity. (2 p)

c. Implement the observer and the state feedback based on the following
pseudo-code skeleton. In order to get full points the code should be written
so that the input-output latency is minimized. Insert code at the places in-
dicated by ..... Make sure that all variables are properly declared.

(2.5 p)

2



private double x1Hat = 0, x2Hat = 0, u = 0, y = 0, r = 0;
...

while (1) {
y = getY();
r = getReference();
....
outputU(u);
....
sleep()

}

4. Two controllers are to be implemented in the same hardware. They both
use a common data logging function which is running in a separate task.
The tasks are executing under fixed priority scheduling. The table below
shows periods (Ti), deadlines (Di), worst-case execution times (Ci) and the
priorities for the tasks (low value means high priority).

Task Ti Di Ci Priority
Controller 1 8 8 2 1
Controller 2 12 12 4 2

Logger Tlo��er Tlo��er 5 3

How often the logger task should run has, however, not yet been decided.

a. What choices of logger task period (Tlo��er) guarantee that the controller
tasks meet their deadlines according to the approximate rate monotonic
analysis? (1 p)

b. What choices of logger task period guarantee that all tasks (including the
logger) meet their deadlines according to the approximate rate monotonic
analysis? Since there are two formulae for the approximate schedulability
test, you should use the formula that gives the least restrictive result.

(1 p)
c. What choices of logger task period guarantee that all tasks (including the

logger) meet their deadlines if response time analysis is used? (2 p)

5. To create the wobble bass sound that is typical for dubstep music one of
the most important digital effects is the lowpass filter where the cut-off
frequency is decided by a low frequency oscillator (LFO). A continuous time
low pass filter with cut-off frequency fc (in Hz) has the transfer function

G(s) = 2π fc
s+ 2π fc

.

Since we will be filtering sound, the cut-off frequency fc will be in the range
[20, 20000]. The sampling frequency of the filter is 96 kHz.

a. Approximate the low pass filter using forward difference and find the pole(s)
of the discrete filter at fc = 20 and fc = 20000. Is there any problem with
the poles of the system and how they approximate the original filter? (1 p)

3



uc
P

Hff

Hm C
y

−1

ym

uff

Σ Σ

Figure 1 Feedforward Design

b. Approximate the filter again but using Tustin’s approximation instead. Find
the pole(s) of the discrete filter at fc = 20 and fc = 20000. Is there any
problem with the poles of the system and how they approximate the original
filter? (1 p)

c. Write a Java implementation of the Tustin approximation based on the
following code skeleton.

public static final double h = 1.0 / 96000;
// Insert variables for old values here...
public double tustinLP(double u, double fc) {

double y;
// Insert code here...
return y;

}

The method tustinLP will be called once for every sample. u is the input to
the filter, fc is the cutoff frequency in Hz. The method should return the
filtered samples. (1 p)

6. The block diagram for feedforward control design using the transfer function
approach is shown in Fig. 1.
In the figure

• Hm – is a model that describes the desired servo performance, and
• Hff – is a feedforward generator that makes y follow ym.

a. Assume that P, C, and Hm are given. How should H f f be chosen to achieve
perfect model following? (1 p)

b. In order for H f f to be implementatable, it must be both causal and stable.
What are the requirements in order for this to be the case? The require-
ments should be stated in terms of conditions on Hm, P, and C. (2 p)

c. When this is applied to PID control of the double tank process the following
holds.
The continuous-time process is given by

G(s) = 3
(1+ 60s)2 .

4



The ZOH-sampled process is given by

P(z) = 0.003627(z+ 0.9672)
(z− 0.9512)2 .

The continuous-time reference model is given by

Gm(s) = 1
(1+ 10s)2 .

The ZOH-sampled reference model is given by

Hm(z) = 0.036936(z+ 0.8187)
(z− 0.7408)2 .

The controller used was an ordinary PID controller.
When the closed loop system was simulated with a step in the reference
signal and with a load disturbance entering at t = 100, the response looked
as follows

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

O
ut

pu
t

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

10

In
pu

t

Time

What is the reason for the ringing in the control signal? Show the problem
by calculating the transfer function from uc to u (where u is the input to
the process P). How should the problem be avoided? (2 p)

7. In the java.util.concurrent package a number of synchronization mech-
anisms are available. One of them is the barrier. Assume that we have a
number of threads executing part of an overall application followed by a
point at which they must coordinate their results. The barrier is simply a
waiting point where all the threads can sync up either to merge results or
to safely move on to the next part of the application. The Java class imple-
menting barriers is called CyclicBarrier. The reason it is called cyclic is
that it can be re-used after the waiting threads are released.
A slightly simplified version of the interface to the CyclicBarrier class is:

public class CyclicBarrier {
public CyclicBarrier(int parties);
public int await();

}

The core of the class is the await() method. This is called by each thread
that needs to wait until the required number of threads are waiting on the

5



barrier. In the constructor the number of threads (parties) using the barrier
is specified. This number is used to trigger the barrier; the threads are all
released when the number of threads waiting on the barrier is equal to the
number of parties specified.
Each thread that calls the await() method gets back a unique return value.
This value is related to the arrival order of the thread at the barrier. The
first thread to arrive gets a value that is one less than the number of parties,
the last thread to arrive will get a value of zero.
The barrier is very simple. All the threads wait until the number of re-
quired parties arrive. Upon arrival of the last thread, the waiting threads
are released, and the barrier can be reused. Since the barrier is so simple
it is straightforward to implement it using the Java synchronization mech-
anisms that are part of the course (synchronized, wait(), notify() and
notifyAll()).
Implement the class CyclicBarrier with the interface and semantics de-
scribed above. In order to get full points you must ensure that all threads
that are released really will be released, also if some other thread has
started to reuse the barrier before the released threads have executed. Cor-
rect handling of exceptions is not required. You may also disregard any
spurious wakeup issues. (3 p)

6


