
Solutions to the exam in Real-Time Systems 130402

These solutions are available on WWW: http://www.control.lth.se/course/FRTN01/

1.

a. In order for the controller to have integral action it must have a pole in
z = 1. This is the case if k1 = 1.

b. In order for the controller to have derivative action it must have a zero in
z = 1. This is the case if k3/k2 = −1.

2.

a. Assuming zero initial condition and taking Z-transform gives

Y(z) = 1
z2 + 0.5 U(z).

The poles are located in p1,2 = ±i/√2.

b. With x1(k) = y(k) and x2(k) = y(k+ 1) we get(x1(k+ 1)
x2(k+ 1)

)
=

(0 1
−0.5 0

)(x1(k)
x2(k)

)
+
(0

1

)
u.

y(k) = (1 0)
(x1(k)

x2(k)

)
.

c. Put y(k + 2) = y(k). Then we get that 1.5y(k) = u(k), meaning that the
stationary gain is 1/1.5.

3.

a. b and c are the setpoint weights for the proportional and derivative parts,
respectively. They are used to tune the setpoint response of the controller.
Kb is the tracking constant for the anti-windup, normally expressed as 1

Tt

b. The integrator and gain blocks implement a lowpass filter for the derivative
part. N is the maximum derivative gain.

4 a. The approximate analysis cannot be used since we have Di < Ti for at least
one task.

4 b. With rate monotonic priority assignment we get the priorities: A - high, B
- medium, C - low.
The exact analysis method gives:
RA = 1 ≤ 2 (OK)

R0
B = 3

R1
B = 3+

⌈
3
3

⌉
1 = 4

R2
B = 3+

⌈
4
3

⌉
1 = 5

R3
B = 3+

⌈
5
3

⌉
1 = 5

1

RB = 5 ≤ 6 (OK)

R0
C = 2

R1
C = 2+

⌈
2
3

⌉
1+

⌈
2
7

⌉
3 = 6

R2
C = 2+

⌈
6
3

⌉
1+

⌈
6
7

⌉
3 = 7

R3
C = 2+

⌈
7
3

⌉
1+

⌈
7
7

⌉
3 = 8

R4
C = 2+

⌈
8
3

⌉
1+

⌈
8
7

⌉
3 = 11

Although RC has not converged yet, we know already that it is larger than
the deadline 10, i.e., the set is not schedulable using rate monotonic fixed-
priority scheduling.

4 c. No, the priorities are the same as for rate monotonic priority assignment
and thus the results from ?? apply to deadline monotonic assignment as
well.

5.

a. Since models are only approximations there is a large probability that there
actually will exist frequencies slightly larger than f0. Thus, a slightly larger
sampling frequency should be chosen.

b. Denote the sampling frequency with fs. By applying the Shannon sampling
theorem we get:

• For fs ≥ 6 f0 no part of the signal will be aliased.
• For 4 f0 ≤ fs < 6 f0 the disturbance will be aliased to outside ± f0.
• For 2 f0 ≤ fs < 4 f0 the disturbance will be aliased into the frequency

interval ± f0

• For f0 ≤ fs < 2 f0 the signal will be aliased to outside ± f0.

6.

a. The Worker threads should ask for new job parts and execute them as long
as there are any left. Then their run method should terminate, so that the
join call in Pool.runParallel can finish. A suitable implementation is

private class Worker extends Thread {
public void run() {

int myPart = getNextPart();
while (myPart != -1) {
job.doPart(myPart);
myPart = getNextPart();

}
}

}

2

b. The critical portion of the code is the getNextPart method, which assigns
the job parts. This method should be synchronized in order to guarantee
that each job part is assigned exactly once.

c. As the Pool class initializes all its state from scratch in the runParallel
method, there is no problem in calling runParallel multiple times in se-
quence. The current implementation is however not thread safe, since if
one thread calls runParallel while it is already running in another thread,
both calls will try to use the same job, nextPart, and numPart variables.

7.

a. We start by writing the continuous-time system on state-space form, i.e.,

dx(t)/dt = −2x(t) + 2u(t)
y(t) = x(t)

The computational delay is equivalent to a constant input delay, i.e., the
continuous-time system will be

dx(t)/dt = −2x(t) + 2u(t− L)
y(t) = x(t)

The ZOH-sampled equivalent of this, assuming that L ≤ h is

x(kh+ h) = Φx(kh) + Γ0u(kh) + Γ1u(kh− h)
y(kh) = x(kh)

where

Φ = e−2h = e−1

Γ0 = 2
∫ h−L

0
e−2sds = 1− e2L−1

Γ1 = 2e−2(h−L)
∫ L

0
e−2sds = e2L−1 − e−1

Applying the control law u(k) = −2y(k) = −2x(k) gives the closed loop
system

x(k+ 1) = e−1x(k) − 2(1− e2L−1)x(k) − 2(e2L−1 − e−1)x(k− 1)

The characteristic equation is hence

z2 + (2(1 − e2L−1) − e−1)z+ 2(e2L−1 − e−1)

Introducing ω = e2L−1, the conditions for stability can be written

2(ω − e−1) < 1
2(ω − e−1) > −1+ (2(1−ω) − e−1)
2(ω − e−1) > −1− (2(1−ω) − e−1)

3

From this follows that

ω < 1
2 + e−1

ω > 1+ e−1

4
The first inequality leads to

2L − 1 < lo�(1/2+ e−1) = −0.1417

from which follows that
L < 0.4291

From the second inequality we have that

2L − 1 > lo�(1/4+ e−1/4) = 0.3420

from which follows that
L > 0.6710

However, since we have already assumed that L < h the second solution
can be disregarded. Hence, the system is stable if L < 0.4291.

8.

a. The system can be written as

U(s) = K β R(s) − K Y(s) + I(s)
I(s) = K

sTi
(R(s) − Y(s))

The approximation s � (z− 1)/h gives

(z− 1)I(z) = K h
Ti
(R(z) − Y(z)) ��

I(k+ 1) = I(k) + K h
Ti
(r(k) − y(k))

The whole controller is given by

u(k) = K β r(k) − K y(k) + I(k)
I(k+ 1) = I(k) + K h

Ti
(r(k) − y(k))

b. The coefficients to be converted are

K = 5
K β = 3.15

K h/Ti = 1.66667

K requires 3 integer bits, giving n = 16 − 1 − 3 = 12 fractional bits. The
fixed-point representations are

K[3.12] = round(5 ⋅ 212) = 20480
K β [3.12] = round(3.15 ⋅ 212) = 12902

K h/Ti[3.12] = round(1.667 ⋅ 212) = 6827

4

c.
// define your parameters here
#define K 20480
#define Kb 12902
#define KhTi 6827

int32_t I = 0;

// Called periodically every 0.1 s.
void do_control(int16_t r) {

int16_t y = read_input();
int32_t u = ((int32_t)Kb*r - (int32_t)K*y + I) >> 12;

// Limit the signal
if (u > 511) {
u = 511;

} else if (u < -512) {
u = -512;

}

write_output(u);

// Note: no shifting here
I = I + (int32_t)KhTi*(r-y);

}

5

