Real-Time Systems

Course Introduction

Karl-Erik Årzén & Martina Maggio 16 January 2018

Lund University, Department of Automatic Control

www.control.lth.se/course/FRTN01

Real-Time Systems

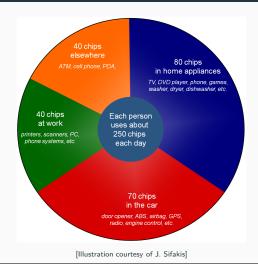
A *real-time system* is a computer system that has to respond to externally generated events or inputs within a finite and specified time period

All control systems are real-time systems

Most real-time systems are *embedded systems*, i.e, the computer is an embedded, integrated part of some equipment or machinery

Embedded Systems

Embedded systems are by far the largest computer sector by volume A large part of all embedded systems are control systems with hard/soft real-time constraints

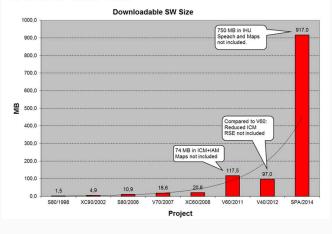

- Vehicles
- Telecom
- Process & manufacturing industry
- Intelligent buildings
- ...

Application Examples

2

Embedded Systems

Example - Car Industry


- $\bullet\,$ A Volvo S80 contains > 50 computers (ECUs) and several communication networks
- Most of them for various control applications
- 25-30% of the price
- Software the largest part of the cost
- Strong connections between control and software
 - e.g., climate control system: 25,000 lines of C code

2014 Mercedes S-class complexity ECUs and Networks 10 FlexRay 73 CAN 61 LIN 200 microprocessors 200 microprocessors 65 million lines of code 30 million lines in multimedia system > > \$10 per line of code

Space flight controlSwitching systems 10⁹ Size in object instructions Automotive embedded SW Linux kernel 10⁸ 10⁷ 10^{6} 1950 1960 1970 1980 1990 2000 2010 Years

Software Size - Car Industry

Volvo XC 90

Autonomous Cars

Software Size

2017 Volvo started running self-driving cars around Gothenburg in the DriveMe project (currently only two and still only in data collection/training mode)

Lines of Code Comparisons

Pacemaker	80k
Space Shuttle	400k
Windows 3.1 (1992)	2.5M
US military drone	3.5M
Mars Rover	5M
Google Chrome	6M
Firefox	9M
Android	12M
Boeing 787	14M
Linux 3.1	15M
F-35 fighter jet	24M
Microsoft Office 2013	44M
Facebook	61M
High-end car	100M
Mouse genome	120M
Human genome	3,300B

Source:

www.information is beautiful.net/visualization/million-lines-of-code/

 $1M\ LOC = 18,000\ pages\ of\ printed\ text$

Example - Process Automation

- "Industrial IT" buzzword used by ABB
- Integration of automation and IT

10

- software, distributed systems, WWW, e-commerce
- Focus on software rather than hardware

Real-Time Systems in Sweden

vodon

Real-Time and Embedded Systems have a very strong position in Sweden and in Lund $\,$

Research:

- LUCAS: Center for Applied Software Research at LTH
 - Computer Science and Automatic Control
- EASE: Industrial Excellence Center for Embedded Applications Software Engineering
- ELLIIT: The Lund-Linköping Initiative on IT and Mobile Communications
- WASP: Wallenberg Autonomous Systems and Software Program

Industry:

 embedded systems and embedded control systems of vital importance to Swedish industry (Ericsson, ABB, Volvo, Scania, SAAB, ...) Study methods for design and implementation of computer control systems.

Focused on embedded control systems.

Two parts:

Course Aims

- 1. Real-time programming
- 2. Design and Implementation of Digital Control Systems

13

15

Programming Languages

Relation to EDA040 Concurrent Programming

Java as the main programming language.

However, not a Java course.

We assume basic knowledge of

- Java
- object-oriented programming concepts

Code examples written Modula 2 (very similar to C, Pascal) will be shown.

One laboratory session and some of the projects will use C

The students who have taken the Concurrent/Real-Time Programming course at Computer Science will recognize some parts of the first lectures $\frac{1}{2}$

During the lectures we will also describe how real-time programming is performed with a conventional real-time programming language (Modula-2) and how a conventional real-time kernel (Stork) is implemented. (You do not have to program in Modula-2)

Deeper understanding and repetition

Students who have taken the Concurrent Programming course will do a special version of Lab 1 in which LJRT is used

Students that have taken the Concurrent Programming course must do a control-oriented project.

14

Staff

12

Staff

Stair

Karl-Erik Årzén Course responsible and lecturer

karlerik@control.lth.se 046-222 87 82

Martina Maggio
Course responsible
and lecturer

martina@control.lth.se 046-222 87 77

Mika Nishimura
Course administrator

mika@control.lth.se 046-222 87 85

Tommi Nylander Teaching assistant

Marcus Thelander Andrén Teaching assistant

 $marcus. the lander_and ren@control. It h. se \\tommi@control. It h. se \\victor@control. It h. se$

Victor Millnert
Teaching assistant

Lectures	Computer Exercises
Lecture Date Time Room Topic Lecturer L1 Jan 16 10-12 M:D Introduction Both LX Jan 17 15-17 M:2112b Extra: Introduction to Java Martina L2 Jan 18 10-12 M:D Concurrent programming Martina L3 Jan 19 10-12 M:D Process communication 1 Martina L4 Jan 23 10-12 M:D Process communication 2 Martina L5 Jan 24 10-12 E:C Interrupts and time Martina L6 Jan 26 10-12 M:D Sampling of linear systems Martina L7 Jan 30 10-12 M:D Sampling of linear systems Martina L7 Jan 30 10-12 M:D Sampling of linear systems Martina L7 Jan 30 10-12 M:D Approx. of analog controllers, PID Karl-Erik L8 Feb 1 10-12 M:D State feedback and observers	 Five computer exercises (C1–C5) Jan 23, 13-15, 15-17 - Jan 24, 8-10 Jan 30, 13-15, 15-17 - Jan 31, 10-12 Feb 6, 13-15, 15-17 - Feb 7, 10-12 Feb 13, 13-15, 15-17 - Feb 14, 10-12 Feb 20, 13-15, 15-17 - Feb 21, 10-12 One extra Java exercise (C0) Jan 19, 15-17 All exercises are held in Department of Automatic Control, Lab A
Problem Solving Exercises	Exercise Groups: Study Period 3
 Six problem-solving exercises (P1–P6) Jan 31, 8-10 - Feb 1, 8-10 - Feb 2, 10-12 Feb 7, 8-10 - Feb 8, 8-10 - Feb 9, 10-12 Feb 14, 8-10 - Feb 15, 8-10 - Feb 16, 10-12 Feb 21, 8-10 - Feb 22, 8-10 - Feb 23, 8-10 Mar 20, 13-15 - Mar 22, 8-10 Mar 27, 13-15 - Mar 29, 8-10 One extra Matlab exercise (P0) Jan 26, 15-17 All exercises are held in Department of Automatic Control, Lab A 	Computer Exercises: Teaching Assistant Tuesdays 13-15 Victor Millnert Tuesdays 15-17 Marcus Thelander Andrén Wednesdays 8-10 and 10-12 Tommi Nylander Problem-Solving Exercises: Teaching Assistant Wednesdays 8-10 Marcus Thelander Andrén Thursdays 8-10 Victor Millnert Tridays 8-10 and 10-12 Tommi Nylander The last two problem solving exercise only have two sessions. In order to balance the load on the exercise groups you must register for the group that you would like to follow. Done via the course home page earliest on Thursday 18 January.
20	21
Exercise Schedule	Laboratory Sessions
Exercise Dates Topic C0 Jan 19 Extra: Introduction to Java C1 Jan 23-24 Threads P0 Jan 26 Extra: Control in Matlab C2 Jan 30-31 Synchronization P1 Jan 31-Feb 1-2 Sampling of systems C3 Feb 6-7 Controller implementation P2 Feb 7-8-9 Input-output models C4 Feb 13-14 Graphical user interface P3 Feb 14-15-16 State feedback and observers C5 Feb 20-21 Prepare Lab 1 P4 Feb 21-22-23 Discrete approximation, PID P5 Mar 20-22 Fixed-point implementation P6 Mar 27-29 Scheduling theory	 Three manadatory laboratory sessions, 4 hours each The preparatory assignments will be checked at the beginning of each lab Room: Department of Automatic Control Lab A Lab Approx. dates Topic Responsible Lab 1 Feb 21-Mar 2 Control of ball and beam Victor Millnert Lab 2 Mar 5-9 Sequence control of bead sorter Marcus Thelander Andrén Lab 3 Mar 19-30 Embedded control of rotating servo Tommi Nylander

22

23

Lab 1

Implementation of a control system for the ball & beam process

- Cascaded PID controllers
- Java or Java/LJRT with Swing-based GUI
- Prepared during the computer exercises

Sequence control of a bead-sorter process

- Discrete-event controller
- JGrafchart a Java-based Grafcet editor and run-time system

Lab 3

Fixed-point implementation of a DC-servo controller

- State feedback controllers
- C on ATMEL AVR Mega16

Project

Lab 2

Projects are performed as team works with four persons per team (in special cases it is OK with smaller project teams).

Around 30 different projects to chose among:

- control of ball and beam process
- control of inverted pendulum
- control of helicopter process
- real-time kernel projects
- $\bullet\,$ embedded system projects using ATMEL AVR and C
- Lego Mindstorm NXT projects
- etc.

If you are following the Predictive Control course it will be possible to do a joint project between the courses.

Students that have taken EDA040 Concurrent Programming course must do a control-oriented project

26

Important dates:

Project

- Feb 20, at Lecture 15: Presentation of available projects
- TBD: Deadline for team formation and project selection
- TBD: Deadline for suggested solution
- TBD: Deadline for project report (10–15 pages, English/Swedish)
- May 14, at Lecture 18: Project demos (mandatory)
- May 14: Oral presentations (mandatory)

Literature

- K.-E. Årzén, "Real-Time Control Systems", 2015. KFS.
- B. Wittenmark, K.J. Åström, K-E Årzén, "Computer-Control: An Overview", Educational version 2016. KFS.
- "Real-Time Systems Problem Solving Exercises", 2015. KFS.
- "Real-Time Systems Formula Sheet". Online.

The 2014 versions are very similar and also possible to use.

28

25

Examination	Course History
Mandatory parts: Three laboratory sessions, project, written exam (5 hours). The exam consists of 25 points and gives the grade Fail, 3, 4, or 5. Accepted aid: The textbooks "Real-Time Control Systems" and "Computer Control: An Overview ", standard mathematical tables and authorized "Real-Time Systems Formula Sheet"; pocket calculator. Exam opportunities: • Wednesday, April 11, 14:00 -19:00, Victoriastadion 1A-1B • Thursday, May 31. 8:00 - 13:00, Sparta D • Saturday, September 1, 8:00 - 13:00, MA 9A	-71-72 Control of LKAB iron ore crusher over modem, PDP 15 -73 "Computers in Control Systems", PDP 15, assembler -79 "Computers in Control Systems 2", LSI-11, Concurrent Pascal -81 Pascal + real-time kernel -83 "Applied Real-Time Programming", IBM PC, Modula 2 -86-87 CS course on real-time programming. Focus on robotics89 "Computer Implementation of Control Systems", VME 68020 -93 "Real-Time Systems". CS course no longer a prerequisite96 Windows NT, Pentium, InTouch -98 PowerPC, Migration to Java started -00 Java, Linux, PC -03 ATMEL AVR microprocessors introduced -07 More focus on digital control and embedded systems
30	31