	Lecture 9
State Feedback and Observers Real-Time Systems, Lecture 9	[IFAC PB Chapter 8]
Karl-Erik Årzén February 2017 Lund University, Department of Automatic Control	 State feedback Observers Integral action and disturbance estimation
ntrol Design	Two Classes of Control Problems
Many factors to consider, including: • Attenuation of load disturbances • Reduction of the effect of measurement noise • Command signal following • Variations and uncertainties in process behavior	 Regulation problems: compromise between rejection of load disturbances and injection of measurement noise Feedback Lecture 9 Servo problems: make the output respond to command signals in the desired way Feedforward Lecture 10
ate Feedback: Problem Formulation	2 Closed-Loop System
• Discrete-time process model	The state equation $x(k+1) = \Phi x(k) + \Gamma u(k)$ with the control law $u(k) = -L x(k)$
$x(k+1) = \Phi x(k) + \Gamma u(k)$	gives the closed-loop system $(l + 1) = (f - DL) (l)$
• Linear feedback from all state variables $u(k) = -Lx(k)$	$x(k+1) = \left(\Phi - \Gamma L\right) x(k)$ Pole placement design: Choose L to obtain the desired characteristic equation
 Disturbances modelled by nonzero initial state x(0) = x₀ Goal: Control the state to the origin, using a reasonable control signal 	$\det(zI-\Phi+\Gamma L)=0$ (Matlab: place or acker)

Example – Double Integrator

$$x(k+1) = \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} x(k) + \begin{pmatrix} h^2/2 \\ h \end{pmatrix} u(k)$$

Linear state-feedback controller

$$u(k) = -Lx(k) = -l_1x_1(k) - l_2x_2(k)$$

The closed-loop system becomes

x

$$\begin{aligned} (k+1) &= (\Phi - \Gamma L) x(k) \\ &= \begin{pmatrix} 1 - l_1 h^2 / 2 & h - l_2 h^2 / 2 \\ - l_1 h & 1 - l_2 h \end{pmatrix} x(k) \end{aligned}$$

Characteristic equation

$$z^{2} + \left(\frac{l_{1}h^{2}}{2} + l_{2}h - 2\right)z + \left(\frac{l_{1}h^{2}}{2} - l_{2}h + 1\right) = 0$$

Example Cont'd

Characteristic equation

$$z^{2} + \left(\frac{l_{1}h^{2}}{2} + l_{2}h - 2\right)z + \left(\frac{l_{1}h^{2}}{2} - l_{2}h + 1\right) = 0$$

Assume desired characteristic equation $z^2 + a_1 z + a_2 = 0$.

Linear equations for $l_1 \mbox{ and } l_2$

$$\frac{l_1h^2}{2} + l_2h - 2 = a_1 \qquad \qquad \frac{l_1h^2}{2} - l_2h + 1 = a_2$$

Solution:

6

8

$$l_1 = \frac{1}{h^2} \left(1 + a_1 + a_2 \right)$$
$$l_2 = \frac{1}{2h} \left(3 + a_1 - a_2 \right)$$

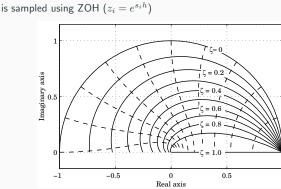
• L depends on h

Where to Place the Poles?

Recall from Lecture 7:

Loci of constant ζ (solid) and ωh (dashed) when

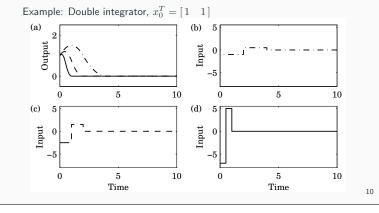
 $\frac{\omega^2}{s^2 + 2\zeta\omega s + \omega^2}$



Deadbeat Control — Only in Discrete Time

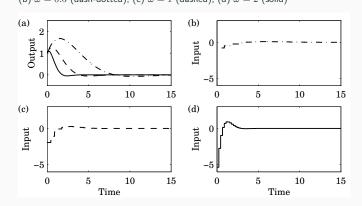
Choose $P(z) = z^n \Rightarrow h$ only remaining design parameter

Drives all states to zero in at most n steps after an impulse disturbance in the states (can be very aggressive for small h!)



Example – Choice of Design Parameters

Double integrator, $x_0^T = \begin{bmatrix} 1 & 1 \end{bmatrix}$, $\omega h = 0.44$, $\zeta = 0.707$ (b) $\omega = 0.5$ (dash-dotted), (c) $\omega = 1$ (dashed), (d) $\omega = 2$ (solid)



Reachability

The eigenvalues of $\Phi-\Gamma L$ can be placed arbitrarily if and only if the system is reachable, i.e. if the reachability matrix

$$W_c = \left(\begin{array}{ccc} \Gamma & \Phi \Gamma & \dots & \Phi^{n-1} \Gamma \end{array} \right)$$

has full rank.

If rank($W_C)=n_c< n$ then the system has an unreachable subsystem and its $n-n_c$ eigenvalues cannot be changed by state feedback. However, if the system is stabilizable the closed loop system will still be stable

In practice, also when the system is reachable, moving some eigenvalues could require high gain and lead to bad controllers.

11

q

State Feedback in Reachable Form

Convert the system to reachable canonical form:

$$x(k+1) = \begin{bmatrix} -a_1 & -a_2 & \dots & -a_n \\ 1 & 0 & \dots & 0 \\ & \ddots & & \vdots \\ & & 1 & 0 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u(k)$$

In this case, application of the state feedback

Reconstruction

$$u = -l_1 x_1 - \dots - l_n x_n$$

changes the coefficients a_1,\ldots,a_n to a_1+l_1,\ldots,a_n+l_n , so the characteristic polynomial changes to

$$z^{n} + (a_{1} + l_{1})z^{n-1} + \dots + (a_{n-1} + l_{n-1})z + a_{n} + l_{n}$$

Design method: Transform to reachable canonical form, apply state feedback, transform the controller back again – Ackermann's formula (see IFAC PB)

State Feedback with Integral Action

Integral action can be introduced by augmenting the plant model with an extra state variable, x_i , that integrates the plant output:

$$x_i(k+1) = x_i(k) + y(k) = x_i(k) + Cx(k)$$

The augmented open-loop system becomes

$$\begin{pmatrix} x(k+1) \\ x_i(k+1) \end{pmatrix} = \begin{pmatrix} \Phi & 0 \\ C & I \end{pmatrix} \begin{pmatrix} x(k) \\ x_i(k) \end{pmatrix} + \begin{pmatrix} \Gamma \\ 0 \end{pmatrix} u(k)$$

We can then design a state feedback controller

Reconstruction Through Direct Calculations

$$u(k) = - \left(\begin{array}{cc} L & L_i \end{array} \right) \left(\begin{array}{c} x(k) \\ x_i(k) \end{array} \right)$$

using the same techniques as before

(Integral action can also be introduced using a disturbance observer, as we will see later) $% \left(\left({{{\left[{{{\left[{{{c}} \right]} \right]}_{i}} \right]}_{i}}_{i}}} \right)$

What to do if we cannot measure the full state vector or if we have noisy measurements?	Basic idea: Reconstruct the state vector $x(k)$ through direct calculations using the output and input sequences $y(k)$, $y(k-1)$,, $u(k-1)$, u(k-2), together with the state-space model of the plant. See IFAB PB p. 57 for details.
Reconstruction Using An Observer	Reconstruction Using An Observer
$\begin{split} & \underbrace{i}_{l} \underbrace{f}_{l} \\ & \underbrace{i}_{l} \underbrace{f}_{l} \\ & \underbrace{i}_{l} \underbrace{f}_{l} \\ & \underbrace{f}_{l} \\ $	Form the estimation error $\tilde{x} = x - \hat{x}$ $\tilde{x}(k+1) = \Phi \tilde{x}(k) - KC \tilde{x}(k)$ $= [\Phi - KC] \tilde{x}(k)$ • Any observer pole placement possible, provided the observability matrix $W_o = \begin{pmatrix} C \\ \vdots \\ C \Phi^{n-1} \end{pmatrix}$ has full rank • Also when the system is not observable the estimation error will still go to zero as long as the system is detectable • Choose K to get good convergence but not too much amplification of measurement noise

Deadbeat Observer

Observer for the Double Integrator

A deadbeat observer is obtained if the observer gain K is chosen so that the matrix $\Phi-KC$ has all eigenvalues zero.

The observer error goes to zero in finite time (in at most n steps, where n is the order of the system)

Noise sensitive (fast observer dynamics)

Equivalent to reconstruction using direct calculations.

 $\Phi - KC = \begin{pmatrix} 1 & h \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} k_1 \\ k_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 - k_1 & h \\ -k_2 & 1 \end{pmatrix}$

Characteristic equation

$$z^2 - (2 - k_1)z + 1 - k_1 + k_2h = 0$$

 $z^2 + p_1 z + p_2 = 0$

Desired characteristic equation:

Gives:

$$2 - k_1 = -p_1$$

$$1 - k_1 + k_2 h = p_2$$

19

Observer for the Double Integrator cont'd	An Alternative Observer
Solution: $\begin{aligned} k_1 &= 2 + p_1 \\ k_2 &= (1 + p_1 + p_2)/h \end{aligned}$ Assume deadbeat observer $(p_1 = p_2 = 0)$ $k_1 = 2$ $k_2 = 1/h$ Resulting observer (assuming $u = 0$) $\hat{x}_1(k+1) = \hat{x}_1(k) + h\hat{x}_2(k) + 2(y(k) - \hat{x}_1(k))$ $\hat{x}_2(k+1) = \hat{x}_2(k) + \frac{1}{h}(y(k) - \hat{x}_1(k))$	The observer presented so far has a one sample delay: $\hat{x}(k \mid k-1) \text{ depends only on measurements up to time } k-1.$ Alternative observer with direct term: $\hat{x}(k \mid k) = \Phi \hat{x}(k-1 \mid k-1) + \Gamma u(k-1) + K \Big[y(k) - C \Big(\Phi \hat{x}(k-1 \mid k-1) + \Gamma u(k-1) \Big) \Big] \\ = (I - KC) \Big(\Phi \hat{x}(k-1 \mid k-1) + \Gamma u(k-1) \Big) + K y(k)$ Reconstruction error: $\tilde{x}(k \mid k) = x(k) - \hat{x}(k \mid k) = (\Phi - KC\Phi) \tilde{x}(k-1 \mid k-1)$ • $\Phi - KC\Phi$ can be given arbitrary eigenvalues if $\Phi - KC$ can • K may be chosen so that some of the states will be observed directly through $y \Rightarrow$ the order of the observer can be reduced • Reduced order observer or Luenberger observer
20	21
Output Feedback	Analysis of the Closed-Loop System
Output Feedback State feedback from observed state:	Analysis of the Closed-Loop System
	Analysis of the Closed-Loop System $\begin{aligned} x(k+1) &= \Phi x(k) + \Gamma u(k) \\ \tilde{x}(k+1) &= (\Phi - KC)\tilde{x}(k) \\ u(k) &= -L\hat{x}(k) = -L(x(k) - \tilde{x}(k)) \end{aligned}$ Eliminate $u(k)$ $\begin{pmatrix} x(k+1) \\ \tilde{x}(k+1) \end{pmatrix} = \begin{pmatrix} \Phi - \Gamma L & \Gamma L \\ 0 & \Phi - KC \end{pmatrix} \begin{pmatrix} x(k) \\ \tilde{x}(k) \end{pmatrix}$ Separation Control poles: $A_c(z) = \det(zI - \Phi + \Gamma L)$ Observer poles: $A_o(z) = \det(zI - \Phi + KC)$

Disturbance Estimation

How to handle disturbances that can not be modeled as impulse disturbances in the process state?

Assume that the process is described by

$$\frac{dx}{dt} = Ax + Bu + v$$
$$y = Cx$$

where \boldsymbol{v} is a disturbance modeled as

$$\frac{dw}{dt} = A_w w$$
$$v = C_w w$$

Since disturbances typically have most of their energy at low frequencies, A_w often has eigenvalues in the origin (constant disturbance) or on the imaginary axis (sinusoidal disturbance)

Augmented Observer and State Feedback

Augmented observer:

$$\begin{pmatrix} \hat{x}(k+1) \\ \hat{w}(k+1) \end{pmatrix} = \begin{pmatrix} \Phi & \Phi_{xw} \\ 0 & \Phi_w \end{pmatrix} \begin{pmatrix} \hat{x}(k) \\ \hat{w}(k) \end{pmatrix} + \begin{pmatrix} \Gamma \\ 0 \end{pmatrix} u(k) + \begin{pmatrix} K \\ K_w \end{pmatrix} \epsilon(k)$$
with $\epsilon(k) = y(k) - C\hat{x}(k)$

Augmented state feedback control law:

$$u(k) = -L\hat{x}(k) - L_w\hat{w}(k)$$

If possible, select L_w such that $\Phi_{xw} - \Gamma L_w = 0$

Disturbance Estimation

Gives the augmented system

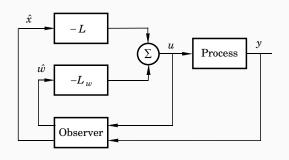
$$\frac{d}{dt} \begin{pmatrix} x \\ w \end{pmatrix} = \begin{pmatrix} A & C_w \\ 0 & A_w \end{pmatrix} \begin{pmatrix} x \\ w \end{pmatrix} + \begin{pmatrix} B \\ 0 \end{pmatrix} u$$
$$y = \begin{pmatrix} C & 0 \end{pmatrix} \begin{pmatrix} x \\ w \end{pmatrix}$$

w

Sample this using ZOH:

$$\begin{pmatrix} x(k+1) \\ w(k+1) \end{pmatrix} = \begin{pmatrix} \Phi & \Phi_{xw} \\ 0 & \Phi_{w} \end{pmatrix} \begin{pmatrix} x(k) \\ w(k) \end{pmatrix} + \begin{pmatrix} \Gamma \\ 0 \end{pmatrix} u(k)$$
$$y = \begin{pmatrix} C & 0 \end{pmatrix} \begin{pmatrix} x(k) \\ w(k) \end{pmatrix}$$

Disturbance Estimation: Block Diagram



27

25

Disturbance Estimation: Closed-Loop System Assume constant disturbance acting on the plant input: The closed-loop system can be written • *v* = *w* • $\Phi_w = 1$ $x(k+1) = (\Phi - \Gamma L)x(k) + (\Phi_{xw} - \Gamma L_w)w + \Gamma L\widetilde{x}(k) + \Gamma L_w\widetilde{w}$ • $\Phi_{xw} = \Gamma$ $w(k+1) = \Phi_w w(k)$ $\widetilde{x}(k+1) = (\Phi - KC)\widetilde{x}(k) + \Phi_{xw}\widetilde{w}(k)$ If we choose $L_w = 1$ we will have perfect cancellation of the load disturbance $\widetilde{w}(k+1) = \Phi_w \widetilde{w}(k) - K_w C \widetilde{x}(k)$ New controller + estimator - L ensures that \boldsymbol{x} goes to zero at the desired rate after a disturbance.

28

26

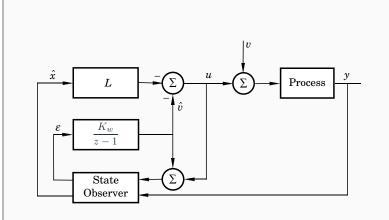
24

- The gain L_w reduces the effect of the disturbance v on the system by feedforward from the estimated disturbance \hat{w} .
- K and K_w influence the rate at which the estimation errors go to zero.

Special Case: Constant Input Disturbance

$$\begin{split} u(k) &= -L\hat{x}(k) - \hat{v}(k) \\ \hat{x}(k+1) &= \Phi\hat{x}(k) + \Gamma\Big(\hat{v}(k) + u(k)\Big) + K\epsilon(k) \\ \hat{v}(k+1) &= \hat{v}(k) + K_w\epsilon(k) \qquad \text{(integrator)} \\ \epsilon(k) &= y(k) - C\hat{x}(k) \end{split}$$

Special Case: Block Diagram



Example – Design

Control of double integrator

$$\frac{dx}{dt} = \begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0\\ 1 \end{pmatrix} u$$
$$y = \begin{pmatrix} 1 & 0 \end{pmatrix} x$$

- Sample with $h=0.44\,$
- Discrete state feedback designed based on continuous-time specification $\omega=1,\;\zeta=0.7$

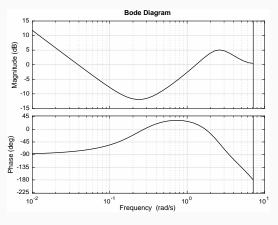
```
• Gives L = [0.73 \ 1.21]
```

• Extended observer assuming constant input disturbance to obtain integral action; all three poles placed in z=0.75.

• Gives $K^T = [0.75 \ 0.41], K_w = 0.08$

Example – Design

Bode diagram of resulting controller:

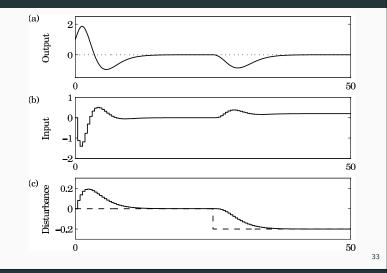


Example – Simulation

30

32

34



Pseudo-Code Structure

State feedback using observer with direct term

y = ReadInput();

2 x_hat = Phi*x_hat + Gamma*u + K*(y - C(Phi*x_hat + Gamma*u)):

- 3 u = -L*x_hat;
- 4 WriteOutput(u);

Can be simplified further in order to minimize the computation time

- y = ReadInput();
- 2 x_hat = x_temp + K*y;
- 3 u = -L*x_hat;
- 4 WriteOutput(u);
- 5 x_temp = (I-K*C)*(Phi*x_hat + Gamma*u);

35

31

 $\label{eq:state-feedback-using-observer-with-one-sample-delay} State-feedback-using-observer-with-one-sample-delay-state-feedback-using-back-usi-back-using-back-using-back-using-back-using-back-using-back-us$

y = ReadInput();

Pseudo-Code Structure

- $u = -L*x_hat;$
- 3 WriteOutput(u);
 4 x hat = Phi*x h
- 4 x_hat = Phi*x_hat + Gamma*u + K*(y C*x_hat);

Optimization-Based Design	Example in Matlab
 Pole placement used to calculate L and K in this course In the course Multivariable Control (Flervariabel Reglering), L and K are instead derived through optimization LQ (Linear Quadratic) and LQG (Linear Quadratic Gaussian) control Short overview in Chapter 11 of IFAC PB Not part of this course 	<pre>% Define continuous-time process A = (0 i; 0 0); B = [0; 1]; C = [1 0]; % Sample the process using ZDH b = 0.44; W = sc(Phi, Gamma, C, 0, h) % Specify desired poles in continuous time onega = 1; zets = 0.7; pc = roots(11 2*zeta*onega onega*21)) % cluclute corresponding desired discrete-time poles pd = exp(pc*h) % Design state feedback L = place(Phi, Gamma, pd) % Define sugmented system and design observer Gamma = (Gamma; cd) Phice = (Phi Gamma; zerces(1,2) 1); % Te = acker(Phic*,Ce*, (0.75 0.75 0.75)); L = (L 1) % Form complete controller Kc = ss(Phic*Gamma*Le=K*ete, ke, Le, 0, h) bode(K) % C arw controller Bode plot margin(Hp*Hc) % check stability margins</pre>
30	37